These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23457228)

  • 1. Correlative imaging of fluorescent proteins in resin-embedded plant material.
    Bell K; Mitchell S; Paultre D; Posch M; Oparka K
    Plant Physiol; 2013 Apr; 161(4):1595-603. PubMed ID: 23457228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetration model for chemical reactivation for resin-embedded green fluorescent protein imaging.
    Li L; Chen R; Liu X; Li N; Liu X; Wang X; Quan T; Lv X; Zeng S
    J Biomed Opt; 2018 Nov; 24(5):1-6. PubMed ID: 30484293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of identified GFP-expressing cells by light and electron microscopy.
    Luby-Phelps K; Ning G; Fogerty J; Besharse JC
    J Histochem Cytochem; 2003 Mar; 51(3):271-4. PubMed ID: 12588954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FIB-SEM imaging properties of Drosophila melanogaster tissues embedded in Lowicryl HM20.
    Porrati F; Grewe D; Seybert A; Frangakis AS; Eltsov M
    J Microsc; 2019 Feb; 273(2):91-104. PubMed ID: 30417390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing CLEM protocols for plants cells: GMA embedding and cryosections as alternatives for preservation of GFP fluorescence in Arabidopsis roots.
    Marion J; Le Bars R; Satiat-Jeunemaitre B; Boulogne C
    J Struct Biol; 2017 Jun; 198(3):196-202. PubMed ID: 28347808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Live-Cell Imaging of Fluorescently Tagged Phloem Proteins with Confocal Microscopy.
    Cayla T; Le Hir R; Dinant S
    Methods Mol Biol; 2019; 2014():95-108. PubMed ID: 31197789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeling of ultrathin resin sections for correlative light and electron microscopy.
    Fabig G; Kretschmar S; Weiche S; Eberle D; Ader M; Kurth T
    Methods Cell Biol; 2012; 111():75-93. PubMed ID: 22857924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy.
    Fitzgibbon J; Bell K; King E; Oparka K
    Plant Physiol; 2010 Aug; 153(4):1453-63. PubMed ID: 20508140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent protein applications in plants.
    Berg RH; Beachy RN
    Methods Cell Biol; 2008; 85():153-77. PubMed ID: 18155463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.
    Höhn K; Fuchs J; Fröber A; Kirmse R; Glass B; Anders-Össwein M; Walther P; Kräusslich HG; Dietrich C
    J Microsc; 2015 Aug; 259(2):121-128. PubMed ID: 25786567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for imaging microtubules in plant cells.
    Holzinger A; Kawamura E; Wasteneys GO
    Methods Mol Biol; 2009; 586():243-62. PubMed ID: 19768434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy, and Live Cell Imaging.
    Celler K; Fujita M; Kawamura E; Ambrose C; Herburger K; Holzinger A; Wasteneys GO
    Methods Mol Biol; 2016; 1365():155-84. PubMed ID: 26498784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins.
    Johnson E; Seiradake E; Jones EY; Davis I; Grünewald K; Kaufmann R
    Sci Rep; 2015 Mar; 5():9583. PubMed ID: 25823571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a neutral embedding resin for optical imaging of fluorescently labeled biological tissue.
    Zhou H; Gang Y; Chen S; Wang Y; Xiong Y; Li L; Yin F; Liu Y; Liu X; Zeng S
    J Biomed Opt; 2017 Oct; 22(10):1-7. PubMed ID: 29076308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.
    Koga D; Kusumi S; Shodo R; Dan Y; Ushiki T
    Microscopy (Oxf); 2015 Dec; 64(6):387-94. PubMed ID: 26206941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in in-resin correlative light and electron microscopy of Epon-embedded cells.
    Tanida I; Yamaguchi J; Suzuki C; Kakuta S; Uchiyama Y
    Microscopy (Oxf); 2023 Oct; 72(5):383-387. PubMed ID: 37217182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of Phloem development and structure in Arabidopsis.
    Truernit E; Bauby H; Dubreucq B; Grandjean O; Runions J; Barthélémy J; Palauqui JC
    Plant Cell; 2008 Jun; 20(6):1494-503. PubMed ID: 18523061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preserving the photoswitching ability of standard fluorescent proteins for correlative in-resin super-resolution and electron microscopy.
    Johnson E; Kaufmann R
    Methods Cell Biol; 2017; 140():49-67. PubMed ID: 28528641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparative methods for imaging plasmodesmata at super-resolution.
    Bell K; Oparka K
    Methods Mol Biol; 2015; 1217():67-79. PubMed ID: 25287196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues.
    Imlau A; Truernit E; Sauer N
    Plant Cell; 1999 Mar; 11(3):309-22. PubMed ID: 10072393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.