These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23457340)

  • 41. Sensitization of InsP3-dependent calcium signalling through structural modification of voltage-dependent calcium channel: a physiological relevance of the calcium channel beta subunit.
    Matifat F; Collin T; Humez S; Brûle G; Fournier F
    Biochem Biophys Res Commun; 1995 Mar; 208(1):440-6. PubMed ID: 7887962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intracellular waves observed by confocal microscopy from Xenopus oocytes.
    Clapham DE; Lechleiter JD; Girard S
    Adv Second Messenger Phosphoprotein Res; 1993; 28():161-5. PubMed ID: 8398398
    [No Abstract]   [Full Text] [Related]  

  • 43. Exogenous protein expression in Xenopus oocytes: basic procedures.
    Bossi E; Fabbrini MS; Ceriotti A
    Methods Mol Biol; 2007; 375():107-31. PubMed ID: 17634599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Caffeine exerts a dual effect on capacitative calcium entry in Xenopus oocytes.
    Hague F; Matifat F; Brûlé G; Collin T
    Cell Signal; 2000 Jan; 12(1):31-5. PubMed ID: 10676845
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction between Ca2+ release from inositol trisphosphate sensitive stores and Ca2+ entry through neuronal Ca2+ channels expressed in Xenopus oocyte.
    Fournier F; Navarre P; Matifat F; Vilbert C; Colin T; Guilbault P; Brule G; Marlot D
    Cell Calcium; 1994 May; 15(5):411-22. PubMed ID: 8033199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inositol trisphosphate is required for the propagation of calcium waves in Xenopus oocytes.
    DeLisle S; Welsh MJ
    J Biol Chem; 1992 Apr; 267(12):7963-6. PubMed ID: 1569053
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes.
    Parker I; Yao Y
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):663-8. PubMed ID: 8815201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium puffs in Xenopus oocytes.
    Parker I; Yao Y
    Ciba Found Symp; 1995; 188():50-60; discussion 60-5. PubMed ID: 7587623
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips.
    Parker I; Choi J; Yao Y
    Cell Calcium; 1996 Aug; 20(2):105-21. PubMed ID: 8889202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Agonist-evoked calcium efflux from a functionally discrete compartment in Xenopus oocytes.
    Shapira H; Lupu-Meiri M; Lipinsky D; Oron Y
    Cell Calcium; 1996 Mar; 19(3):201-10. PubMed ID: 8732260
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inositol trisphosphate isomers, but not inositol 1,3,4,5-tetrakisphosphate, induce calcium influx in Xenopus laevis oocytes.
    Snyder PM; Krause KH; Welsh MJ
    J Biol Chem; 1988 Aug; 263(23):11048-51. PubMed ID: 2981051
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Depletion of intracellular Ca2+ stores, mediated by Mg2+-stimulated InsP3 liberation or thapsigargin, induces a capacitative Ca2+ influx in prawn oocytes.
    Goudeau H; Goudeau M
    Dev Biol; 1998 Jan; 193(2):225-38. PubMed ID: 9473326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Picomolar sensitivity to inositol trisphosphate in Xenopus oocytes.
    Demuro A; Parker I
    Cell Calcium; 2015 Nov; 58(5):511-7. PubMed ID: 26344104
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microinjection of inositol 1,2-(cyclic)-4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, and inositol 1,4,5-trisphosphate into intact Xenopus oocytes can induce membrane currents independent of extracellular calcium.
    Stith BJ; Proctor WR
    J Cell Biochem; 1989 Jul; 40(3):321-30. PubMed ID: 2550488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inositol 1,4,5-trisphosphate receptors in Xenopus laevis oocytes: localization and modulation by Ca2+.
    Callamaras N; Parker I
    Cell Calcium; 1994 Jan; 15(1):66-78. PubMed ID: 8149406
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphatidylinositol 4,5-bisphosphate degradation inhibits the Na+/bicarbonate cotransporter NBCe1-B and -C variants expressed in Xenopus oocytes.
    Thornell IM; Bevensee MO
    J Physiol; 2015 Feb; 593(3):541-58. PubMed ID: 25398525
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microinjection of RNA and preparation of secreted proteins from Xenopus oocytes.
    Sive HL; Grainger RM; Harland RM
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.prot5538. PubMed ID: 21123425
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Go protein as signal transducer in the pertussis toxin-sensitive phosphatidylinositol pathway.
    Moriarty TM; Padrell E; Carty DJ; Omri G; Landau EM; Iyengar R
    Nature; 1990 Jan; 343(6253):79-82. PubMed ID: 2104959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overexpression of inositol 1,4,5-trisphosphate 3-kinase in Xenopus oocytes inhibits agonist-evoked capacitative calcium entry.
    Verjans B; Petersen CC; Berridge MJ
    Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):679-82. PubMed ID: 7818468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of inositol trisphosphates and inositol tetrakisphosphate on Ca2+ release and Cl- current pattern in the Xenopus laevis oocyte.
    Ferguson JE; Han JK; Kao JP; Nuccitelli R
    Exp Cell Res; 1991 Feb; 192(2):352-65. PubMed ID: 1846334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.