These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23457552)
1. RhoA/Rho-kinase and nitric oxide in vascular reactivity in rats with endotoxaemia. Liao MH; Shih CC; Tsao CM; Chen SJ; Wu CC PLoS One; 2013; 8(2):e56331. PubMed ID: 23457552 [TBL] [Abstract][Full Text] [Related]
2. Intrarenal haemodynamics and renal dysfunction in endotoxaemia: effects of nitric oxide synthase inhibition. Millar CG; Thiemermann C Br J Pharmacol; 1997 Aug; 121(8):1824-30. PubMed ID: 9283724 [TBL] [Abstract][Full Text] [Related]
3. Effect of selective blockade of endothelin ETB receptors on the liver dysfunction and injury caused by endotoxaemia in the rat. Ruetten H; Thiemermann C Br J Pharmacol; 1996 Oct; 119(3):479-86. PubMed ID: 8894167 [TBL] [Abstract][Full Text] [Related]
4. Temporal relationships between levels of circulating NO derivatives, vascular NO production and hyporeactivity to noradrenaline induced by endotoxin in rats. Paya D; Maupoil V; Schott C; Rochette L; Stoclet JC Cardiovasc Res; 1995 Dec; 30(6):952-9. PubMed ID: 8746211 [TBL] [Abstract][Full Text] [Related]
5. The multiple organ dysfunction syndrome caused by endotoxin in the rat: attenuation of liver dysfunction by inhibitors of nitric oxide synthase. Thiemermann C; Ruetten H; Wu CC; Vane JR Br J Pharmacol; 1995 Dec; 116(7):2845-51. PubMed ID: 8680715 [TBL] [Abstract][Full Text] [Related]
6. Glibenclamide-induced inhibition of the expression of inducible nitric oxide synthase in cultured macrophages and in the anaesthetized rat. Wu CC; Thiemermann C; Vane JR Br J Pharmacol; 1995 Mar; 114(6):1273-81. PubMed ID: 7542532 [TBL] [Abstract][Full Text] [Related]
7. Attenuation of endotoxin-induced multiple organ dysfunction by 1-amino-2-hydroxy-guanidine, a potent inhibitor of inducible nitric oxide synthase. Ruetten H; Southan GJ; Abate A; Thiemermann C Br J Pharmacol; 1996 May; 118(2):261-70. PubMed ID: 8735625 [TBL] [Abstract][Full Text] [Related]
8. Aminoguanidine attenuates the delayed circulatory failure and improves survival in rodent models of endotoxic shock. Wu CC; Chen SJ; Szabó C; Thiemermann C; Vane JR Br J Pharmacol; 1995 Apr; 114(8):1666-72. PubMed ID: 7541282 [TBL] [Abstract][Full Text] [Related]
9. Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Szabó C; Mitchell JA; Thiemermann C; Vane JR Br J Pharmacol; 1993 Mar; 108(3):786-92. PubMed ID: 7682137 [TBL] [Abstract][Full Text] [Related]
10. Effects of SPAK on vascular reactivity and nitric oxide production in endotoxemic mice. Shih CC; Hsu LP; Liao MH; Yang SS; Ho ST; Wu CC Eur J Pharmacol; 2017 Nov; 814():248-254. PubMed ID: 28864211 [TBL] [Abstract][Full Text] [Related]
11. ROCK induced inflammation of the microcirculation during endotoxemia mediated by nitric oxide synthase. McGown CC; Brown NJ; Hellewell PG; Brookes ZL Microvasc Res; 2011 May; 81(3):281-8. PubMed ID: 21354186 [TBL] [Abstract][Full Text] [Related]
12. Tetramethylpyradizine prevents inducible NO synthase expression and improves survival in rodent models of endotoxic shock. Wu CC; Liao MH; Chen SJ; Yen MH Naunyn Schmiedebergs Arch Pharmacol; 1999 Oct; 360(4):435-44. PubMed ID: 10551281 [TBL] [Abstract][Full Text] [Related]
13. Curcumin improves vascular function and alleviates oxidative stress in non-lethal lipopolysaccharide-induced endotoxaemia in mice. Sompamit K; Kukongviriyapan U; Nakmareong S; Pannangpetch P; Kukongviriyapan V Eur J Pharmacol; 2009 Aug; 616(1-3):192-9. PubMed ID: 19540224 [TBL] [Abstract][Full Text] [Related]
14. Pentoxifylline improves circulatory failure and survival in murine models of endotoxaemia. Wu CC; Liao MH; Chen SJ; Yen MH Eur J Pharmacol; 1999 May; 373(1):41-9. PubMed ID: 10408250 [TBL] [Abstract][Full Text] [Related]
15. The Rho-A/Rho-kinase pathway is up-regulated but remains inhibited by cyclic guanosine monophosphate-dependent mechanisms during endotoxemia in small mesenteric arteries. da Silva-Santos JE; Chiao CW; Leite R; Webb RC Crit Care Med; 2009 May; 37(5):1716-23. PubMed ID: 19325475 [TBL] [Abstract][Full Text] [Related]
16. Role of nitric oxide and K+-channels in vascular hyporeactivity induced by endotoxin. Chen SJ; Wu CC; Yen MH Naunyn Schmiedebergs Arch Pharmacol; 1999 Jun; 359(6):493-9. PubMed ID: 10431761 [TBL] [Abstract][Full Text] [Related]
17. Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of endotoxin shock. Thiemermann C; Wu CC; Szabó C; Perretti M; Vane JR Br J Pharmacol; 1993 Sep; 110(1):177-82. PubMed ID: 7693276 [TBL] [Abstract][Full Text] [Related]
18. Induction of endothelium-dependent constriction of mesenteric arteries in endotoxemic hypotensive shock. Tseng TL; Chen MF; Liu CH; Pang CY; Hsu YH; Lee TJ Br J Pharmacol; 2016 Apr; 173(7):1179-95. PubMed ID: 26694894 [TBL] [Abstract][Full Text] [Related]
19. Effects of aminoguanidine and N(omega)-nitro-L-arginine methyl ester on vascular hyporeactivity induced by endotoxaemia. Ismailoglu UB; Pekiner C; Yorganci K; Sahin-Erdemli I Eur J Surg; 2001 Nov; 167(11):803-9. PubMed ID: 11848232 [TBL] [Abstract][Full Text] [Related]
20. Involvement of bradykinin and nitric oxide in the early hemodynamic effects of lipopolysaccharide in rats. Paya D; Stoclet JC Shock; 1995 May; 3(5):376-9. PubMed ID: 7648340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]