These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23457578)

  • 1. Predicting chemical toxicity effects based on chemical-chemical interactions.
    Chen L; Lu J; Zhang J; Feng KR; Zheng MY; Cai YD
    PLoS One; 2013; 8(2):e56517. PubMed ID: 23457578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of cancer drugs by chemical-chemical interactions.
    Lu J; Huang G; Li HP; Feng KY; Chen L; Zheng MY; Cai YD
    PLoS One; 2014; 9(2):e87791. PubMed ID: 24498372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Integrated Multi-Label Classifier with Chemical-Chemical Interactions for Prediction of Chemical Toxicity Effects.
    Liu T; Chen L; Pan X
    Comb Chem High Throughput Screen; 2018; 21(6):403-410. PubMed ID: 29852864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting drugs side effects based on chemical-chemical interactions and protein-chemical interactions.
    Chen L; Huang T; Zhang J; Zheng MY; Feng KY; Cai YD; Chou KC
    Biomed Res Int; 2013; 2013():485034. PubMed ID: 24078917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of drug target groups based on chemical-chemical similarities and chemical-chemical/protein connections.
    Chen L; Lu J; Luo X; Feng KY
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):207-13. PubMed ID: 23732562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of drug indications based on chemical interactions and chemical similarities.
    Huang G; Lu Y; Lu C; Zheng M; Cai YD
    Biomed Res Int; 2015; 2015():584546. PubMed ID: 25821813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico Prediction of Drug Induced Liver Toxicity Using Substructure Pattern Recognition Method.
    Zhang C; Cheng F; Li W; Liu G; Lee PW; Tang Y
    Mol Inform; 2016 Apr; 35(3-4):136-44. PubMed ID: 27491923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future of toxicology--predictive toxicology: An expanded view of "chemical toxicity".
    Richard AM
    Chem Res Toxicol; 2006 Oct; 19(10):1257-62. PubMed ID: 17040094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Anatomical Therapeutic Chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities.
    Chen L; Zeng WM; Cai YD; Feng KY; Chou KC
    PLoS One; 2012; 7(4):e35254. PubMed ID: 22514724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting biological functions of compounds based on chemical-chemical interactions.
    Hu LL; Chen C; Huang T; Cai YD; Chou KC
    PLoS One; 2011; 6(12):e29491. PubMed ID: 22220213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression.
    Horvath D; Marcou G; Varnek A; Kayastha S; de la Vega de León A; Bajorath J
    J Chem Inf Model; 2016 Sep; 56(9):1631-40. PubMed ID: 27564682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure activity relationship in toxicology.
    Vereczkey L
    Acta Physiol Hung; 1995; 83(1):47-50. PubMed ID: 7660836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Chemical Multi-target Profiles and Adverse Outcomes with Systems Toxicology.
    Wathieu H; Ojo A; Dakshanamurthy S
    Curr Med Chem; 2017; 24(16):1705-1720. PubMed ID: 27978797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compound annotation with real time cellular activity profiles to improve drug discovery.
    Fang Y
    Expert Opin Drug Discov; 2016; 11(3):269-80. PubMed ID: 26787137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.
    Planson AG; Carbonell P; Paillard E; Pollet N; Faulon JL
    Biotechnol Bioeng; 2012 Mar; 109(3):846-50. PubMed ID: 22038678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow.
    Yuan H; Wang YY; Cheng YY
    J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of the use of in silico methods to predict the chemistry of molecular initiating events related to drug toxicity.
    Ellison CM; Enoch SJ; Cronin MT
    Expert Opin Drug Metab Toxicol; 2011 Dec; 7(12):1481-95. PubMed ID: 22032332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Method to Evaluate Progress in Lead Optimization.
    Vogt M; Yonchev D; Bajorath J
    J Med Chem; 2018 Dec; 61(23):10895-10900. PubMed ID: 30499667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting bioprocess targets of chemical compounds through integration of chemical-genetic and genetic interactions.
    Simpkins SW; Nelson J; Deshpande R; Li SC; Piotrowski JS; Wilson EH; Gebre AA; Safizadeh H; Okamoto R; Yoshimura M; Costanzo M; Yashiroda Y; Ohya Y; Osada H; Yoshida M; Boone C; Myers CL
    PLoS Comput Biol; 2018 Oct; 14(10):e1006532. PubMed ID: 30376562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.