BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23457628)

  • 1. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection.
    Wargo MJ
    PLoS One; 2013; 8(2):e56850. PubMed ID: 23457628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites.
    Wargo MJ; Ho TC; Gross MJ; Whittaker LA; Hogan DA
    Infect Immun; 2009 Mar; 77(3):1103-11. PubMed ID: 19103776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular choline and glycine betaine pools impact osmoprotection and phospholipase C production in Pseudomonas aeruginosa.
    Fitzsimmons LF; Hampel KJ; Wargo MJ
    J Bacteriol; 2012 Sep; 194(17):4718-26. PubMed ID: 22753069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmoprotectant-dependent expression of plcH, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in Pseudomonas aeruginosa PAO1.
    Sage AE; Vasil ML
    J Bacteriol; 1997 Aug; 179(15):4874-81. PubMed ID: 9244277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence.
    Jackson AA; Gross MJ; Daniels EF; Hampton TH; Hammond JH; Vallet-Gely I; Dove SL; Stanton BA; Hogan DA
    J Bacteriol; 2013 Jul; 195(13):3093-104. PubMed ID: 23667230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingosine induction of the
    Mackinder JR; Hinkel LA; Schutz K; Eckstrom K; Fisher K; Wargo MJ
    J Bacteriol; 2024 Mar; 206(3):e0038223. PubMed ID: 38411048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of mutants affected in the osmoprotectant-dependent induction of phospholipase C in Pseudomonas aeruginosa PAO1.
    Sage AE; Vasil AI; Vasil ML
    Mol Microbiol; 1997 Jan; 23(1):43-56. PubMed ID: 9004219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.
    Wargo MJ; Szwergold BS; Hogan DA
    J Bacteriol; 2008 Apr; 190(8):2690-9. PubMed ID: 17951379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa.
    Wargo MJ
    Appl Environ Microbiol; 2013 Apr; 79(7):2112-20. PubMed ID: 23354714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the GbdR regulon in Pseudomonas aeruginosa.
    Hampel KJ; LaBauve AE; Meadows JA; Fitzsimmons LF; Nock AM; Wargo MJ
    J Bacteriol; 2014 Jan; 196(1):7-15. PubMed ID: 24097953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34.
    Pocard JA; Vincent N; Boncompagni E; Smith LT; Poggi MC; Rudulier DL
    Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1369-1379. PubMed ID: 9141699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycine betaine transmethylase mutant of Pseudomonas aeruginosa.
    Serra AL; Mariscotti JF; Barra JL; Lucchesi GI; Domenech CE; Lisa AT
    J Bacteriol; 2002 Aug; 184(15):4301-3. PubMed ID: 12107149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperation between LepA and PlcH contributes to the in vivo virulence and growth of Pseudomonas aeruginosa in mice.
    Kida Y; Shimizu T; Kuwano K
    Infect Immun; 2011 Jan; 79(1):211-9. PubMed ID: 21041488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes.
    Boch J; Kempf B; Schmid R; Bremer E
    J Bacteriol; 1996 Sep; 178(17):5121-9. PubMed ID: 8752328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global regulator Anr represses PlcH phospholipase activity in Pseudomonas aeruginosa when oxygen is limiting.
    Jackson AA; Daniels EF; Hammond JH; Willger SD; Hogan DA
    Microbiology (Reading); 2014 Oct; 160(Pt 10):2215-2225. PubMed ID: 25073853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas syringae BetT is a low-affinity choline transporter that is responsible for superior osmoprotection by choline over glycine betaine.
    Chen C; Beattie GA
    J Bacteriol; 2008 Apr; 190(8):2717-25. PubMed ID: 18156257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of three transporters, CbcXWV, BetT1, and BetT3, in Pseudomonas aeruginosa choline uptake for catabolism.
    Malek AA; Chen C; Wargo MJ; Beattie GA; Hogan DA
    J Bacteriol; 2011 Jun; 193(12):3033-41. PubMed ID: 21478341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcosine Catabolism in Pseudomonas aeruginosa Is Transcriptionally Regulated by SouR.
    Willsey GG; Wargo MJ
    J Bacteriol; 2016 Jan; 198(2):301-10. PubMed ID: 26503852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupling of choline-O-sulphate utilization from osmoprotection in Pseudomonas putida.
    Galvão TC; de Lorenzo V; Cánovas D
    Mol Microbiol; 2006 Dec; 62(6):1643-54. PubMed ID: 17116241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking phosphatidylcholine utilization in Pseudomonas aeruginosa, via mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the importance of this nutrient source in vivo.
    Sun Z; Kang Y; Norris MH; Troyer RM; Son MS; Schweizer HP; Dow SW; Hoang TT
    PLoS One; 2014; 9(7):e103778. PubMed ID: 25068317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.