These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23457641)

  • 1. Cardiomyocyte imaging using real-time spatial light interference microscopy (SLIM).
    Bhaduri B; Wickland D; Wang R; Chan V; Bashir R; Popescu G
    PLoS One; 2013; 8(2):e56930. PubMed ID: 23457641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier phase microscopy with white light.
    Bhaduri B; Tangella K; Popescu G
    Biomed Opt Express; 2013; 4(8):1434-41. PubMed ID: 24010005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational interference microscopy enabled by deep learning.
    Jiao Y; He YR; Kandel ME; Liu X; Lu W; Popescu G
    APL Photonics; 2021 Apr; 6(4):. PubMed ID: 35308602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography and refractometry of nanostructures using spatial light interference microscopy.
    Wang Z; Chun IS; Li X; Ong ZY; Pop E; Millet L; Gillette M; Popescu G
    Opt Lett; 2010 Jan; 35(2):208-10. PubMed ID: 20081970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Light Interference Microscopy (SLIM) using twisted-nematic liquid-crystal modulation.
    Nguyen TH; Popescu G
    Biomed Opt Express; 2013; 4(9):1571-83. PubMed ID: 24049678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial light interference microscopy (SLIM).
    Wang Z; Millet L; Mir M; Ding H; Unarunotai S; Rogers J; Gillette MU; Popescu G
    Opt Express; 2011 Jan; 19(2):1016-26. PubMed ID: 21263640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial light interference microscopy: principle and applications to biomedicine.
    Chen X; Kandel ME; Popescu G
    Adv Opt Photonics; 2021 Jun; 13(2):353-425. PubMed ID: 35494404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free high-resolution imaging of live cells with deconvolved spatial light interference microscopy.
    Haldar JP; Wang Z; Popescu G; Liang ZP
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3382-5. PubMed ID: 21097241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deconvolved spatial light interference microscopy for live cell imaging.
    Haldar JP; Wang Z; Popescu G; Liang ZP
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2489-97. PubMed ID: 21622067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing Escherichia coli sub-cellular structure using sparse deconvolution Spatial Light Interference Tomography.
    Mir M; Babacan SD; Bednarz M; Do MN; Golding I; Popescu G
    PLoS One; 2012; 7(6):e39816. PubMed ID: 22761910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative performance evaluation of a back-illuminated sCMOS camera with 95% QE for super-resolution localization microscopy.
    Wang Y; Zhao L; Hu Z; Wang Y; Zhao Z; Li L; Huang ZL
    Cytometry A; 2017 Dec; 91(12):1175-1183. PubMed ID: 29165899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflectional quantitative phase-contrast microscopy (RQPCM) with annular epi-illumination.
    Ma Y; Wang Y; Ma L; Zheng J; Liu M; Gao P
    Appl Opt; 2022 May; 61(13):3641-3647. PubMed ID: 36256403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics.
    Shaked NT; Zhu Y; Badie N; Bursac N; Wax A
    J Biomed Opt; 2010; 15(3):030503. PubMed ID: 20614989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-interference-channel quantitative-phase microscopy of live cell dynamics.
    Shaked NT; Rinehart MT; Wax A
    Opt Lett; 2009 Mar; 34(6):767-9. PubMed ID: 19282926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell imaging beyond the diffraction limit using sparse deconvolution spatial light interference microscopy.
    Babacan SD; Wang Z; Do M; Popescu G
    Biomed Opt Express; 2011 Jul; 2(7):1815-27. PubMed ID: 21750760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive evaluation of contractile behavior of cardiomyocyte monolayers based on motion vector analysis.
    Hayakawa T; Kunihiro T; Dowaki S; Uno H; Matsui E; Uchida M; Kobayashi S; Yasuda A; Shimizu T; Okano T
    Tissue Eng Part C Methods; 2012 Jan; 18(1):21-32. PubMed ID: 21851323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High speed sCMOS-based oblique plane microscopy applied to the study of calcium dynamics in cardiac myocytes.
    Sikkel MB; Kumar S; Maioli V; Rowlands C; Gordon F; Harding SE; Lyon AR; MacLeod KT; Dunsby C
    J Biophotonics; 2016 Mar; 9(3):311-23. PubMed ID: 26488431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fastSIM: a practical implementation of fast structured illumination microscopy.
    Lu-Walther HW; Kielhorn M; Förster R; Jost A; Wicker K; Heintzmann R
    Methods Appl Fluoresc; 2015 Jan; 3(1):014001. PubMed ID: 29148480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral-domain differential interference contrast microscopy.
    Zhu Y; Shaked NT; Satterwhite LL; Wax A
    Opt Lett; 2011 Feb; 36(4):430-2. PubMed ID: 21326412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast cancer diagnosis using spatial light interference microscopy.
    Majeed H; Kandel ME; Han K; Luo Z; Macias V; Tangella K; Balla A; Popescu G
    J Biomed Opt; 2015; 20(11):111210. PubMed ID: 26291148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.