BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 23457787)

  • 1. [Asymmetric synthesis of aromatic L-amino acids catalyzed by transaminase].
    Xia W; Sun Y; Min C; Han W; Wu S
    Sheng Wu Gong Cheng Xue Bao; 2012 Nov; 28(11):1346-58. PubMed ID: 23457787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering aromatic L-amino acid transaminase for the asymmetric synthesis of constrained analogs of L-phenylalanine.
    Cho BK; Seo JH; Kang TJ; Kim J; Park HY; Lee BS; Kim BG
    Biotechnol Bioeng; 2006 Aug; 94(5):842-50. PubMed ID: 16673402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced conversion rate of L-phenylalanine by coupling reactions of aminotransferases and phosphoenolpyruvate carboxykinase in Escherichia coli K-12.
    Chao YP; Lai ZJ; Chen P; Chern JT
    Biotechnol Prog; 1999; 15(3):453-8. PubMed ID: 10356262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination.
    Urrestarazu A; Vissers S; Iraqui I; Grenson M
    Mol Gen Genet; 1998 Jan; 257(2):230-7. PubMed ID: 9491082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily.
    Iraqui I; Vissers S; Cartiaux M; Urrestarazu A
    Mol Gen Genet; 1998 Jan; 257(2):238-48. PubMed ID: 9491083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase.
    Cho BK; Seo JH; Kang TW; Kim BG
    Biotechnol Bioeng; 2003 Jul; 83(2):226-34. PubMed ID: 12768628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.
    Romagnoli G; Knijnenburg TA; Liti G; Louis EJ; Pronk JT; Daran JM
    Yeast; 2015 Jan; 32(1):29-45. PubMed ID: 24733517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression.
    Lütke-Eversloh T; Stephanopoulos G
    Metab Eng; 2008 Mar; 10(2):69-77. PubMed ID: 18243023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Phenylalanine Ester Synthesis from Stable β-Keto Ester Substrate Using Engineered ω-Transaminases.
    Buß O; Voss M; Delavault A; Gorenflo P; Syldatk C; Bornscheuer U; Rudat J
    Molecules; 2018 May; 23(5):. PubMed ID: 29783679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of chiral β-amino acids using ω-transaminase from Burkholderia graminis.
    Mathew S; Bea H; Nadarajan SP; Chung T; Yun H
    J Biotechnol; 2015 Feb; 196-197():1-8. PubMed ID: 25615946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous synthesis of 2-phenylethanol and L-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway.
    Hwang JY; Park J; Seo JH; Cha M; Cho BK; Kim J; Kim BG
    Biotechnol Bioeng; 2009 Apr; 102(5):1323-9. PubMed ID: 19016485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using coupled transaminase reactions.
    Cho BK; Cho HJ; Park SH; Yun H; Kim BG
    Biotechnol Bioeng; 2003 Mar; 81(7):783-9. PubMed ID: 12557311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of non-proteinogenic amino acids from α-keto acid precursors with recombinant Corynebacterium glutamicum.
    Kim JY; Lee YA; Wittmann C; Park JB
    Biotechnol Bioeng; 2013 Nov; 110(11):2846-55. PubMed ID: 23737264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic resolution for the preparation of enantiomerically enriched D-beta-heterocyclic alanine derivatives using Escherichia coli aromatic L-amino acid transaminase.
    Cho BK; Park HY; Seo JH; Kinnera K; Lee BS; Kim BG
    Biotechnol Bioeng; 2004 Nov; 88(4):512-9. PubMed ID: 15459908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β- and γ-amino acids.
    Mathew S; Nadarajan SP; Chung T; Park HH; Yun H
    Enzyme Microb Technol; 2016 Jun; 87-88():52-60. PubMed ID: 27178795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase.
    Mathew S; Nadarajan SP; Sundaramoorthy U; Jeon H; Chung T; Yun H
    Biotechnol Lett; 2017 Apr; 39(4):535-543. PubMed ID: 28004208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric synthesis of aromatic β-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable β-keto acids.
    Mathew S; Jeong SS; Chung T; Lee SH; Yun H
    Biotechnol J; 2016 Jan; 11(1):185-90. PubMed ID: 26494487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous pathway for the production of L-phenylglycine from glucose by E. coli.
    Liu SP; Liu RX; El-Rotail AA; Ding ZY; Gu ZH; Zhang L; Shi GY
    J Biotechnol; 2014 Sep; 186():91-7. PubMed ID: 25011099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate.
    Sprenger GA
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):739-49. PubMed ID: 17435995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic synthesis of chiral γ-amino acids using ω-transaminase.
    Shon M; Shanmugavel R; Shin G; Mathew S; Lee SH; Yun H
    Chem Commun (Camb); 2014 Oct; 50(84):12680-3. PubMed ID: 25207334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.