These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23458321)

  • 1. Unexpectedly high yield carbon nanotube synthesis from low-activity carbon feedstocks at high concentrations.
    Kimura H; Goto J; Yasuda S; Sakurai S; Yumura M; Futaba DN; Hata K
    ACS Nano; 2013 Apr; 7(4):3150-7. PubMed ID: 23458321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes.
    Tetali S; Zaka M; Schönfelder R; Bachmatiuk A; Börrnert F; Ibrahim I; Lin JH; Cuniberti G; Warner JH; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):3839-44. PubMed ID: 19883094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Striking influence of the catalyst support and its acid-base properties: new insight into the growth mechanism of carbon nanotubes.
    Magrez A; Smajda R; Seo JW; Horváth E; Ribic PR; Andresen JC; Acquaviva D; Olariu A; Laurenczy G; Forró L
    ACS Nano; 2011 May; 5(5):3428-37. PubMed ID: 21517089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons.
    He L; Lu JQ; Jiang H
    Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297
    [No Abstract]   [Full Text] [Related]  

  • 5. Growth kinetics of vertically aligned carbon nanotube arrays in clean oxygen-free conditions.
    In JB; Grigoropoulos CP; Chernov AA; Noy A
    ACS Nano; 2011 Dec; 5(12):9602-10. PubMed ID: 22070618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays.
    Zhang X; Li Q; Tu Y; Li Y; Coulter JY; Zheng L; Zhao Y; Jia Q; Peterson DE; Zhu Y
    Small; 2007 Feb; 3(2):244-8. PubMed ID: 17262764
    [No Abstract]   [Full Text] [Related]  

  • 7. Carbon nanotube nucleation driven by catalyst morphology dynamics.
    Pigos E; Penev ES; Ribas MA; Sharma R; Yakobson BI; Harutyunyan AR
    ACS Nano; 2011 Dec; 5(12):10096-101. PubMed ID: 22082229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-Orders-of-magnitude density control of single-walled carbon nanotube networks by maximizing catalyst activation and dosing carbon supply.
    Han ZJ; Levchenko I; Yick S; Ostrikov KK
    Nanoscale; 2011 Nov; 3(11):4848-53. PubMed ID: 22006171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen-induced catalyst restructuring for epitaxial growth of multiwalled carbon nanotubes.
    Pattinson SW; Ranganathan V; Murakami HK; Koziol KK; Windle AH
    ACS Nano; 2012 Sep; 6(9):7723-30. PubMed ID: 22853327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unstable micellarization of carbon-nanotube solutions for low-loss reactivity and crosslinking.
    Chowdhary D; Kim WE; Kouklin N
    Small; 2007 Feb; 3(2):226-9. PubMed ID: 17191287
    [No Abstract]   [Full Text] [Related]  

  • 11. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and transformation of linear adamantane assemblies inside carbon nanotubes.
    Zhang J; Feng Y; Ishiwata H; Miyata Y; Kitaura R; Dahl JE; Carlson RM; Shinohara H; Tománek D
    ACS Nano; 2012 Oct; 6(10):8674-83. PubMed ID: 22920674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets.
    Seichepine F; Salomon S; Collet M; Guillon S; Nicu L; Larrieu G; Flahaut E; Vieu C
    Nanotechnology; 2012 Mar; 23(9):095303. PubMed ID: 22327351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultralight conductive carbon-nanotube-polymer composite.
    Xu XB; Li ZM; Shi L; Bian XC; Xiang ZD
    Small; 2007 Mar; 3(3):408-11. PubMed ID: 17285656
    [No Abstract]   [Full Text] [Related]  

  • 16. Nanotube electronics: a flexible approach to mobility.
    Hong S; Myung S
    Nat Nanotechnol; 2007 Apr; 2(4):207-8. PubMed ID: 18654263
    [No Abstract]   [Full Text] [Related]  

  • 17. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C; Suenaga K; Iijima S
    ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plumbing carbon nanotubes.
    Jin C; Suenaga K; Iijima S
    Nat Nanotechnol; 2008 Jan; 3(1):17-21. PubMed ID: 18654444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites.
    Small WR; in het Panhuis M
    Small; 2007 Sep; 3(9):1500-3. PubMed ID: 17668430
    [No Abstract]   [Full Text] [Related]  

  • 20. Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction.
    Yasuda S; Futaba DN; Yamada T; Satou J; Shibuya A; Takai H; Arakawa K; Yumura M; Hata K
    ACS Nano; 2009 Dec; 3(12):4164-70. PubMed ID: 19947579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.