BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 23458453)

  • 1. [Co(bpy)3](3+/2+) and [Co(phen)3](3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system.
    Sasaki Y; Kato H; Kudo A
    J Am Chem Soc; 2013 Apr; 135(14):5441-9. PubMed ID: 23458453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Z-scheme photocatalyst systems employing Rh- and Ir-doped metal oxide materials for water splitting under visible light irradiation.
    Kudo A; Yoshino S; Tsuchiya T; Udagawa Y; Takahashi Y; Yamaguchi M; Ogasawara I; Matsumoto H; Iwase A
    Faraday Discuss; 2019 Jul; 215(0):313-328. PubMed ID: 31017593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese-Substituted Polyoxometalate as an Effective Shuttle Redox Mediator in Z-Scheme Water Splitting under Visible Light.
    Tsuji K; Tomita O; Higashi M; Abe R
    ChemSusChem; 2016 Aug; 9(16):2201-8. PubMed ID: 27458011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO
    Yoshino S; Takayama T; Yamaguchi Y; Iwase A; Kudo A
    Acc Chem Res; 2022 Apr; 55(7):966-977. PubMed ID: 35230087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A redox-mediator-free solar-driven Z-scheme water-splitting system consisting of modified Ta3N5 as an oxygen-evolution photocatalyst.
    Ma SS; Maeda K; Hisatomi T; Tabata M; Kudo A; Domen K
    Chemistry; 2013 Jun; 19(23):7480-6. PubMed ID: 23584996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of Metal Sulfide Material of (CuGa)(1-x)Zn(2x)S2 Solid Solution with Visible Light Response in Photocatalytic and Photoelectrochemical Solar Water Splitting Systems.
    Kato T; Hakari Y; Ikeda S; Jia Q; Iwase A; Kudo A
    J Phys Chem Lett; 2015 Mar; 6(6):1042-7. PubMed ID: 26262867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-.
    Abe R; Sayama K; Sugihara H
    J Phys Chem B; 2005 Aug; 109(33):16052-61. PubMed ID: 16853039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water Splitting and CO2 Reduction under Visible Light Irradiation Using Z-Scheme Systems Consisting of Metal Sulfides, CoOx-Loaded BiVO4, and a Reduced Graphene Oxide Electron Mediator.
    Iwase A; Yoshino S; Takayama T; Ng YH; Amal R; Kudo A
    J Am Chem Soc; 2016 Aug; 138(32):10260-4. PubMed ID: 27459021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Ir and La-codoped BaTa
    Iwase A; Kudo A
    Chem Commun (Camb); 2017 Jun; 53(45):6156-6159. PubMed ID: 28534585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An intermolecular heterobimetallic system for photocatalytic water reduction.
    Hansen S; Klahn M; Beweries T; Rosenthal U
    ChemSusChem; 2012 Apr; 5(4):656-60. PubMed ID: 22422641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light.
    Iwase A; Ng YH; Ishiguro Y; Kudo A; Amal R
    J Am Chem Soc; 2011 Jul; 133(29):11054-7. PubMed ID: 21711031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges.
    Wang Q; Hisatomi T; Katayama M; Takata T; Minegishi T; Kudo A; Yamada T; Domen K
    Faraday Discuss; 2017 Apr; 197():491-504. PubMed ID: 28164191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur-doped g-C
    Lin YR; Dizon GVC; Yamada K; Liu CY; Venault A; Lin HY; Yoshida M; Hu C
    J Colloid Interface Sci; 2020 May; 567():202-212. PubMed ID: 32058170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible Light-Driven Z-Scheme Water Splitting Using Oxysulfide H
    Ma G; Chen S; Kuang Y; Akiyama S; Hisatomi T; Nakabayashi M; Shibata N; Katayama M; Minegishi T; Domen K
    J Phys Chem Lett; 2016 Oct; 7(19):3892-3896. PubMed ID: 27626912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator.
    Iwashina K; Iwase A; Ng YH; Amal R; Kudo A
    J Am Chem Soc; 2015 Jan; 137(2):604-7. PubMed ID: 25551584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High turnover in a photocatalytic system for water reduction to produce hydrogen using a Ru,  Rh,  Ru photoinitiated electron collector.
    Arachchige SM; Shaw R; White TA; Shenoy V; Tsui HM; Brewer KJ
    ChemSusChem; 2011 Apr; 4(4):514-8. PubMed ID: 21438156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*.
    Yang X; Baik MH
    J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The synthesis and characterization of dinuclear ruthenium sensitizers and their applications in photocatalytic hydrogen production.
    Veikko U; Zhang X; Peng T; Cai P; Cheng G
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():539-44. PubMed ID: 23353692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1.
    Wang Q; Hisatomi T; Jia Q; Tokudome H; Zhong M; Wang C; Pan Z; Takata T; Nakabayashi M; Shibata N; Li Y; Sharp ID; Kudo A; Yamada T; Domen K
    Nat Mater; 2016 Jun; 15(6):611-5. PubMed ID: 26950596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst.
    Maeda K; Higashi M; Lu D; Abe R; Domen K
    J Am Chem Soc; 2010 Apr; 132(16):5858-68. PubMed ID: 20369838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.