BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23458492)

  • 1. Effects of the protein environment on the spectral properties of tryptophan radicals in Pseudomonas aeruginosa azurin.
    Bernini C; Andruniów T; Olivucci M; Pogni R; Basosi R; Sinicropi A
    J Am Chem Soc; 2013 Mar; 135(12):4822-33. PubMed ID: 23458492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic comparison of photogenerated tryptophan radicals in azurin: effects of local environment and structure.
    Shafaat HS; Leigh BS; Tauber MJ; Kim JE
    J Am Chem Soc; 2010 Jul; 132(26):9030-9. PubMed ID: 20536238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photogeneration and Quenching of Tryptophan Radical in Azurin.
    Larson BC; Pomponio JR; Shafaat HS; Kim RH; Leigh BS; Tauber MJ; Kim JE
    J Phys Chem B; 2015 Jul; 119(29):9438-49. PubMed ID: 25625660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman characterization of a stable tryptophan radical in an azurin mutant.
    Shafaat HS; Leigh BS; Tauber MJ; Kim JE
    J Phys Chem B; 2009 Jan; 113(1):382-8. PubMed ID: 19072535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray crystal structure of the two site-specific mutants Ile7Ser and Phe110Ser of azurin from Pseudomonas aeruginosa.
    Hammann C; Messerschmidt A; Huber R; Nar H; Gilardi G; Canters GW
    J Mol Biol; 1996 Jan; 255(3):362-6. PubMed ID: 8568881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray structure determination and characterization of the Pseudomonas aeruginosa azurin mutant Met121Glu.
    Karlsson BG; Tsai LC; Nar H; Sanders-Loehr J; Bonander N; Langer V; Sjölin L
    Biochemistry; 1997 Apr; 36(14):4089-95. PubMed ID: 9100002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique environment of Trp48 in Pseudomonas aeruginosa azurin as probed by site-directed mutagenesis and dynamic fluorescence spectroscopy.
    Gilardi G; Mei G; Rosato N; Canters GW; Finazzi-Agrò A
    Biochemistry; 1994 Feb; 33(6):1425-32. PubMed ID: 8312262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction potential tuning of the blue copper center in Pseudomonas aeruginosa azurin by the axial methionine as probed by unnatural amino acids.
    Garner DK; Vaughan MD; Hwang HJ; Savelieff MG; Berry SM; Honek JF; Lu Y
    J Am Chem Soc; 2006 Dec; 128(49):15608-17. PubMed ID: 17147368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lysine ionization on the structure and electrochemical behaviour of the Met44-->Lys mutant of the blue-copper protein azurin from Pseudomonas aeruginosa.
    Van de Kamp M; Canters GW; Andrew CR; Sanders-Loehr J; Bender CJ; Peisach J
    Eur J Biochem; 1993 Nov; 218(1):229-38. PubMed ID: 8243468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical investigation of the electron transfer protein azurin-gold nanoparticle system.
    Delfino I; Cannistraro S
    Biophys Chem; 2009 Jan; 139(1):1-7. PubMed ID: 18938024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopy and reactivity of a photogenerated tryptophan radical in a structurally defined protein environment.
    Miller JE; Grădinaru C; Crane BR; Di Bilio AJ; Wehbi WA; Un S; Winkler JR; Gray HB
    J Am Chem Soc; 2003 Nov; 125(47):14220-1. PubMed ID: 14624538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed resonance Raman spectrum of Nickel(II)-substituted Pseudomonas aeruginosa azurin.
    Czernuszewicz RS; Fraczkiewicz G; Zareba AA
    Inorg Chem; 2005 Aug; 44(16):5745-52. PubMed ID: 16060626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environment of copper in Pseudomonas aeruginosa azurin probed by binding of exogenous ligands to Met121X (X = Gly, Ala, Val, Leu, or Asp) mutants.
    Bonander N; Karlsson BG; Vänngård T
    Biochemistry; 1996 Feb; 35(7):2429-36. PubMed ID: 8652586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the fluorescence of protein-embedded tryptophans with ab initio multiconfigurational quantum chemistry: the limiting cases of parvalbumin and monellin.
    Pistolesi S; Sinicropi A; Pogni R; Basosi R; Ferré N; Olivucci M
    J Phys Chem B; 2009 Dec; 113(49):16082-90. PubMed ID: 19835364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved fluorescence study of azurin variants: conformational heterogeneity and tryptophan mobility.
    Kroes SJ; Canters GW; Gilardi G; van Hoek A; Visser AJ
    Biophys J; 1998 Nov; 75(5):2441-50. PubMed ID: 9788939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of azurin to cytochrome c 551 as investigated by surface plasmon resonance and fluorescence.
    Santini S; Bizzarri AR; Yamada T; Beattie CW; Cannistraro S
    J Mol Recognit; 2014 Mar; 27(3):124-30. PubMed ID: 24446376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the structure and mobility of Pseudomonas aeruginosa azurin by circular dichroism and dynamic fluorescence anisotropy.
    Mei G; Gilardi G; Venanzi M; Rosato N; Canters GW; Agró AF
    Protein Sci; 1996 Nov; 5(11):2248-54. PubMed ID: 8931143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of the disulfide bridge in azurin from Pseudomonas aeruginosa.
    Bonander N; Karlsson BG; Vänngård T
    Biochim Biophys Acta; 1995 Aug; 1251(1):48-54. PubMed ID: 7647092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysics of metalloazurins.
    Hansen JE; Longworth JW; Fleming GR
    Biochemistry; 1990 Aug; 29(31):7329-38. PubMed ID: 2119804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and DFT studies of second-sphere variants of the type 1 copper site in azurin: covalent and nonlocal electrostatic contributions to reduction potentials.
    Hadt RG; Sun N; Marshall NM; Hodgson KO; Hedman B; Lu Y; Solomon EI
    J Am Chem Soc; 2012 Oct; 134(40):16701-16. PubMed ID: 22985400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.