These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 23459127)
1. An engineered heme-copper center in myoglobin: CO migration and binding. Nienhaus K; Olson JS; Nienhaus GU Biochim Biophys Acta; 2013 Sep; 1834(9):1824-31. PubMed ID: 23459127 [TBL] [Abstract][Full Text] [Related]
2. Structural dynamics of myoglobin: effect of internal cavities on ligand migration and binding. Nienhaus K; Deng P; Kriegl JM; Nienhaus GU Biochemistry; 2003 Aug; 42(32):9647-58. PubMed ID: 12911306 [TBL] [Abstract][Full Text] [Related]
3. Structural dynamics of myoglobin: spectroscopic and structural characterization of ligand docking sites in myoglobin mutant L29W. Nienhaus K; Deng P; Kriegl JM; Nienhaus GU Biochemistry; 2003 Aug; 42(32):9633-46. PubMed ID: 12911305 [TBL] [Abstract][Full Text] [Related]
4. Role of copper ion in regulating ligand binding in a myoglobin-based cytochrome C oxidase model. Lu C; Zhao X; Lu Y; Rousseau DL; Yeh SR J Am Chem Soc; 2010 Feb; 132(5):1598-605. PubMed ID: 20070118 [TBL] [Abstract][Full Text] [Related]
5. Structural dynamics of myoglobin: ligand migration among protein cavities studied by Fourier transform infrared/temperature derivative spectroscopy. Lamb DC; Nienhaus K; Arcovito A; Draghi F; Miele AE; Brunori M; Nienhaus GU J Biol Chem; 2002 Apr; 277(14):11636-44. PubMed ID: 11792698 [TBL] [Abstract][Full Text] [Related]
6. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions. Zhao X; Yeung N; Russell BS; Garner DK; Lu Y J Am Chem Soc; 2006 May; 128(21):6766-7. PubMed ID: 16719438 [TBL] [Abstract][Full Text] [Related]
7. A photolysis-triggered heme ligand switch in H93G myoglobin. Franzen S; Bailey J; Dyer RB; Woodruff WH; Hu RB; Thomas MR; Boxer SG Biochemistry; 2001 May; 40(17):5299-305. PubMed ID: 11318654 [TBL] [Abstract][Full Text] [Related]
8. Redox-dependent structural changes in an engineered heme-copper center in myoglobin: insights into chloride binding to CuB in heme copper oxidases. Zhao X; Nilges MJ; Lu Y Biochemistry; 2005 May; 44(17):6559-64. PubMed ID: 15850389 [TBL] [Abstract][Full Text] [Related]
9. The effect of protein internal cavities on ligand migration and binding in myoglobin. Nienhaus K; Nienhaus GU Micron; 2004; 35(1-2):67-9. PubMed ID: 15036294 [TBL] [Abstract][Full Text] [Related]
10. Structural dynamics of myoglobin: ligand migration and binding in valine 68 mutants. Nienhaus K; Deng P; Olson JS; Warren JJ; Nienhaus GU J Biol Chem; 2003 Oct; 278(43):42532-44. PubMed ID: 12907676 [TBL] [Abstract][Full Text] [Related]
11. The effect of ligand dynamics on heme electronic transition band III in myoglobin. Nienhaus K; Lamb DC; Deng P; Nienhaus GU Biophys J; 2002 Feb; 82(2):1059-67. PubMed ID: 11806945 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the kinetic barriers for ligand binding to sperm whale myoglobin using site-directed mutagenesis and laser photolysis techniques. Carver TE; Rohlfs RJ; Olson JS; Gibson QH; Blackmore RS; Springer BA; Sligar SG J Biol Chem; 1990 Nov; 265(32):20007-20. PubMed ID: 2246277 [TBL] [Abstract][Full Text] [Related]
13. Structural dynamics of myoglobin: an infrared kinetic study of ligand migration in mutants YQR and YQRF. Lamb DC; Arcovito A; Nienhaus K; Minkow O; Draghi F; Brunori M; Nienhaus GU Biophys Chem; 2004 Apr; 109(1):41-58. PubMed ID: 15059658 [TBL] [Abstract][Full Text] [Related]
14. Ligand binding to synthetic mutant myoglobin (His-E7----Gly): role of the distal histidine. Braunstein D; Ansari A; Berendzen J; Cowen BR; Egeberg KD; Frauenfelder H; Hong MK; Ormos P; Sauke TB; Scholl R Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8497-501. PubMed ID: 3186740 [TBL] [Abstract][Full Text] [Related]
15. Ligand migration and protein fluctuations in myoglobin mutant L29W. Nienhaus K; Ostermann A; Nienhaus GU; Parak FG; Schmidt M Biochemistry; 2005 Apr; 44(13):5095-105. PubMed ID: 15794647 [TBL] [Abstract][Full Text] [Related]
16. Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands. Decatur SM; DePillis GD; Boxer SG Biochemistry; 1996 Apr; 35(13):3925-32. PubMed ID: 8672423 [TBL] [Abstract][Full Text] [Related]
17. Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution. Krzywda S; Murshudov GN; Brzozowski AM; Jaskolski M; Scott EE; Klizas SA; Gibson QH; Olson JS; Wilkinson AJ Biochemistry; 1998 Nov; 37(45):15896-907. PubMed ID: 9843395 [TBL] [Abstract][Full Text] [Related]
18. The position 68(E11) side chain in myoglobin regulates ligand capture, bond formation with heme iron, and internal movement into the xenon cavities. Dantsker D; Roche C; Samuni U; Blouin G; Olson JS; Friedman JM J Biol Chem; 2005 Nov; 280(46):38740-55. PubMed ID: 16155005 [TBL] [Abstract][Full Text] [Related]
19. Structural dynamics of myoglobin: FTIR-TDS study of NO migration and binding. Nienhaus K; Palladino P; Nienhaus GU Biochemistry; 2008 Jan; 47(3):935-48. PubMed ID: 18161992 [TBL] [Abstract][Full Text] [Related]
20. Myoglobin mutants giving the largest geminate yield in CO rebinding in the nanosecond time domain. Sugimoto T; Unno M; Shiro Y; Dou Y; Ikeda-Saito M Biophys J; 1998 Nov; 75(5):2188-94. PubMed ID: 9788913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]