These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23459307)

  • 1. Spin seebeck effect and thermal colossal magnetoresistance in graphene nanoribbon heterojunction.
    Ni Y; Yao K; Fu H; Gao G; Zhu S; Wang S
    Sci Rep; 2013; 3():1380. PubMed ID: 23459307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple thermal spin transport performances of graphene nanoribbon heterojuction co-doped with Nitrogen and Boron.
    Huang H; Gao G; Fu H; Zheng A; Zou F; Ding G; Yao K
    Sci Rep; 2017 Jun; 7(1):3955. PubMed ID: 28638083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton.
    Fu HH; Wu DD; Zhang ZQ; Gu L
    Sci Rep; 2015 May; 5():10547. PubMed ID: 26000658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-based spin caloritronics.
    Zeng M; Feng Y; Liang G
    Nano Lett; 2011 Mar; 11(3):1369-73. PubMed ID: 21344908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spin-Seebeck diode with a negative differential spin-Seebeck effect in a hydrogen-terminated zigzag silicene nanoribbon heterojunction.
    Fu HH; Gu L; Wu DD
    Phys Chem Chem Phys; 2016 May; 18(18):12742-7. PubMed ID: 27098900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-dependent thermoelectric effects in graphene-based spin valves.
    Zeng M; Huang W; Liang G
    Nanoscale; 2013 Jan; 5(1):200-8. PubMed ID: 23151965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-Seebeck effect and thermal colossal magnetoresistance in the narrowest zigzag graphene nanoribbons.
    Wu DD; Fu HH
    Nanotechnology; 2021 Mar; 32(24):245703. PubMed ID: 33755594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Strain-Tuned Spin Seebeck Effect, Spin Polarization, and Giant Magnetoresistance of a Graphene Nanobubble in Zigzag Graphene Nanoribbons.
    Ni Y; Deng G; Li J; Hua H; Liu N
    ACS Omega; 2021 Jun; 6(23):15308-15315. PubMed ID: 34151110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spin-dependent transport properties of defected zigzag graphene nanoribbons with graphene nanobubbles.
    Ni Y; Li J; Tao W; Ding H; Li RX
    Phys Chem Chem Phys; 2021 Feb; 23(4):2753-2761. PubMed ID: 33471019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfect spin Seebeck effect, spin-valve, spin-filter and spin-rectification based on the heterojunction of sawtooth graphene and graphyne nanoribbons.
    Ni Y; Hua H; Li J; Hu N
    Nanoscale; 2022 Mar; 14(10):3818-3825. PubMed ID: 35191456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.
    Zhu L; Li R; Yao K
    Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal spin filtering, thermal spin switching and negative-differential-resistance in thermal spin currents in zigzag SiC nanoribbons.
    Wu DD; Fu HH; Gu L; Ni Y; Zu FX; Yao KL
    Phys Chem Chem Phys; 2014 Sep; 16(33):17493-8. PubMed ID: 25019693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perylene-based molecular device: multifunctional spintronic and spin caloritronic applications.
    Wu X; Xiao S; Quan J; Tian C; Gao G
    Phys Chem Chem Phys; 2023 Mar; 25(10):7354-7365. PubMed ID: 36825532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport and spin-dependent Seebeck effect in parallel step-like zigzag graphene nanoribbon junctions.
    Tan X; Liu L; Du GF; Fu HH
    Phys Chem Chem Phys; 2020 Sep; 22(34):19100-19107. PubMed ID: 32808610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spin-dependent Seebeck effect and the charge and spin figure of merit in a hybrid structure of single-walled carbon nanotubes and zigzag-edge graphene nanoribbons.
    Ye XM; Tang XQ; Tan XY; Ren DH
    Phys Chem Chem Phys; 2018 Jul; 20(29):19424-19429. PubMed ID: 29992219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifying spin current filtering and magnetoresistance in a molecular spintronic device.
    Zhao GD; Li LM; Wang Y; Stroppa A; Zhang JH; Ren W
    RSC Adv; 2018 Dec; 8(72):41587-41593. PubMed ID: 35559333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First Principle Study of Temperature-Dependent Magnetoresistance and Spin Filtration Effect in WS
    Pandey N; Kumar A; Chakrabarti S
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39248-39253. PubMed ID: 31557436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfect Spin Filter in a Tailored Zigzag Graphene Nanoribbon.
    Kang D; Wang B; Xia C; Li H
    Nanoscale Res Lett; 2017 Dec; 12(1):357. PubMed ID: 28525951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-channel current valve in a three terminal zigzag graphene nanoribbon junction.
    Zhang L
    J Phys Condens Matter; 2017 Feb; 29(5):055304. PubMed ID: 27941223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spin caloritronic transport properties of newly designed devices consisting of a sawtooth graphene nanoribbon and its derived five-member ring structure.
    Ni Y; Chen K; Hu N; Deng G; Liu J; Chen M
    Phys Chem Chem Phys; 2023 Jun; 25(24):16578-16586. PubMed ID: 37309551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.