These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23459366)

  • 1. Identification of the SlmA active site responsible for blocking bacterial cytokinetic ring assembly over the chromosome.
    Cho H; Bernhardt TG
    PLoS Genet; 2013; 9(2):e1003304. PubMed ID: 23459366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist.
    Cho H; McManus HR; Dove SL; Bernhardt TG
    Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3773-8. PubMed ID: 21321206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Nucleoid Occlusion Protein SlmA Binds to Lipid Membranes.
    Robles-Ramos MÁ; Margolin W; Sobrinos-Sanguino M; Alfonso C; Rivas G; Monterroso B; Zorrilla S
    mBio; 2020 Sep; 11(5):. PubMed ID: 32873767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SlmA antagonism of FtsZ assembly employs a two-pronged mechanism like MinCD.
    Du S; Lutkenhaus J
    PLoS Genet; 2014 Jul; 10(7):e1004460. PubMed ID: 25078077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check.
    Tonthat NK; Arold ST; Pickering BF; Van Dyke MW; Liang S; Lu Y; Beuria TK; Margolin W; Schumacher MA
    EMBO J; 2011 Jan; 30(1):154-64. PubMed ID: 21113127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ.
    Schumacher MA; Zeng W
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4988-93. PubMed ID: 27091999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SlmA forms a higher-order structure on DNA that inhibits cytokinetic Z-ring formation over the nucleoid.
    Tonthat NK; Milam SL; Chinnam N; Whitfill T; Margolin W; Schumacher MA
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10586-91. PubMed ID: 23754405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity.
    Cabré EJ; Monterroso B; Alfonso C; Sánchez-Gorostiaga A; Reija B; Jiménez M; Vicente M; Zorrilla S; Rivas G
    PLoS One; 2015; 10(5):e0126434. PubMed ID: 25950808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A replication-inhibited unsegregated nucleoid at mid-cell blocks Z-ring formation and cell division independently of SOS and the SlmA nucleoid occlusion protein in Escherichia coli.
    Cambridge J; Blinkova A; Magnan D; Bates D; Walker JR
    J Bacteriol; 2014 Jan; 196(1):36-49. PubMed ID: 24142249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial Nucleoid Occlusion: Multiple Mechanisms for Preventing Chromosome Bisection During Cell Division.
    Schumacher MA
    Subcell Biochem; 2017; 84():267-298. PubMed ID: 28500529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial FtsZ protein forms phase-separated condensates with its nucleoid-associated inhibitor SlmA.
    Monterroso B; Zorrilla S; Sobrinos-Sanguino M; Robles-Ramos MA; López-Álvarez M; Margolin W; Keating CD; Rivas G
    EMBO Rep; 2019 Jan; 20(1):. PubMed ID: 30523075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli.
    Bernhardt TG; de Boer PA
    Mol Cell; 2005 May; 18(5):555-64. PubMed ID: 15916962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli.
    Wang X; Possoz C; Sherratt DJ
    Genes Dev; 2005 Oct; 19(19):2367-77. PubMed ID: 16204186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZapA and ZapB form an FtsZ-independent structure at midcell.
    Buss JA; Peters NT; Xiao J; Bernhardt TG
    Mol Microbiol; 2017 May; 104(4):652-663. PubMed ID: 28249098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FtsZ placement in nucleoid-free bacteria.
    Pazos M; Casanova M; Palacios P; Margolin W; Natale P; Vicente M
    PLoS One; 2014; 9(3):e91984. PubMed ID: 24638110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MinC N- and C-Domain Interactions Modulate FtsZ Assembly, Division Site Selection, and MinD-Dependent Oscillation in
    LaBreck CJ; Conti J; Viola MG; Camberg JL
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the Contact Sites of the
    Roseboom W; Nazir MG; Meiresonne NY; Mohammadi T; Verheul J; Buncherd H; Bonvin AMJJ; de Koning LJ; de Koster CG; de Jong L; den Blaauwen T
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30261644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bacterial cell division protein FtsZ assembles into cytoplasmic rings in fission yeast.
    Srinivasan R; Mishra M; Wu L; Yin Z; Balasubramanian MK
    Genes Dev; 2008 Jul; 22(13):1741-6. PubMed ID: 18593876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The keepers of the ring: regulators of FtsZ assembly.
    Ortiz C; Natale P; Cueto L; Vicente M
    FEMS Microbiol Rev; 2016 Jan; 40(1):57-67. PubMed ID: 26377318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligomerization of FtsZ converts the FtsZ tail motif (conserved carboxy-terminal peptide) into a multivalent ligand with high avidity for partners ZipA and SlmA.
    Du S; Park KT; Lutkenhaus J
    Mol Microbiol; 2015 Jan; 95(2):173-88. PubMed ID: 25382687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.