These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 23459598)

  • 1. Neuroscientific model of motivational process.
    Kim SI
    Front Psychol; 2013; 4():98. PubMed ID: 23459598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action.
    Bissonette GB; Roesch MR
    Curr Top Behav Neurosci; 2016; 27():199-230. PubMed ID: 26276036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemogenetic Disconnection between the Orbitofrontal Cortex and the Rostromedial Caudate Nucleus Disrupts Motivational Control of Goal-Directed Action.
    Oyama K; Hori Y; Mimura K; Nagai Y; Eldridge MAG; Saunders RC; Miyakawa N; Hirabayashi T; Hori Y; Inoue KI; Suhara T; Takada M; Higuchi M; Richmond BJ; Minamimoto T
    J Neurosci; 2022 Aug; 42(32):6267-6275. PubMed ID: 35794012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Present contribution of neurosciences to a new clinical reading of obsessive-compulsive disorder].
    Aouizerate B; Rotgé JY; Bioulac B; Tignol J
    Encephale; 2007; 33(2):203-10. PubMed ID: 17675916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning.
    Ridderinkhof KR; van den Wildenberg WP; Segalowitz SJ; Carter CS
    Brain Cogn; 2004 Nov; 56(2):129-40. PubMed ID: 15518930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroimaging of goal-directed behavior in midlife women.
    Bosak K; Martin L
    Nurs Res; 2014; 63(6):388-96. PubMed ID: 25186027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motivation and cognitive control: from behavior to neural mechanism.
    Botvinick M; Braver T
    Annu Rev Psychol; 2015 Jan; 66():83-113. PubMed ID: 25251491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventromedial Prefrontal Cortex Damage Is Associated with Decreased Ventral Striatum Volume and Response to Reward.
    Pujara MS; Philippi CL; Motzkin JC; Baskaya MK; Koenigs M
    J Neurosci; 2016 May; 36(18):5047-54. PubMed ID: 27147657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Reward and Aversion Shape Motivation and Decision Making: A Computational Account.
    Verharen JPH; Adan RAH; Vanderschuren LJMJ
    Neuroscientist; 2020 Feb; 26(1):87-99. PubMed ID: 30866712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-Related Differences in Motivational Integration and Cognitive Control.
    Yee DM; Adams S; Beck A; Braver TS
    Cogn Affect Behav Neurosci; 2019 Jun; 19(3):692-714. PubMed ID: 30980339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning.
    Haber SN; Kim KS; Mailly P; Calzavara R
    J Neurosci; 2006 Aug; 26(32):8368-76. PubMed ID: 16899732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The orbitofrontal cortex and emotion in health and disease, including depression.
    Rolls ET
    Neuropsychologia; 2019 May; 128():14-43. PubMed ID: 28951164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Motivation: Computational Models of PFC Can Explain Neural Coding of Motivation and Effort-based Decision-making in Health and Disease.
    Vassena E; Deraeve J; Alexander WH
    J Cogn Neurosci; 2017 Oct; 29(10):1633-1645. PubMed ID: 28654358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Subjective Value of Cognitive Effort is Encoded by a Domain-General Valuation Network.
    Westbrook A; Lamichhane B; Braver T
    J Neurosci; 2019 May; 39(20):3934-3947. PubMed ID: 30850512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of cognitive and motivational information in the primate lateral prefrontal cortex.
    Sakagami M; Watanabe M
    Ann N Y Acad Sci; 2007 May; 1104():89-107. PubMed ID: 17416923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms Underlying Motivational Deficits in Psychopathology: Similarities and Differences in Depression and Schizophrenia.
    Barch DM; Pagliaccio D; Luking K
    Curr Top Behav Neurosci; 2016; 27():411-49. PubMed ID: 26026289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of reward processing and motivational impairment in schizophrenia.
    Strauss GP; Waltz JA; Gold JM
    Schizophr Bull; 2014 Mar; 40 Suppl 2(Suppl 2):S107-16. PubMed ID: 24375459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choice selection and reward anticipation: an fMRI study.
    Ernst M; Nelson EE; McClure EB; Monk CS; Munson S; Eshel N; Zarahn E; Leibenluft E; Zametkin A; Towbin K; Blair J; Charney D; Pine DS
    Neuropsychologia; 2004; 42(12):1585-97. PubMed ID: 15327927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.