BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23460015)

  • 1. Three-dimensional photolithographic micropatterning: a novel tool to probe the complexities of cell migration.
    Hoffmann JC; West JL
    Integr Biol (Camb); 2013 May; 5(5):817-27. PubMed ID: 23460015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration.
    Lee SH; Moon JJ; West JL
    Biomaterials; 2008 Jul; 29(20):2962-8. PubMed ID: 18433863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels.
    Leslie-Barbick JE; Moon JJ; West JL
    J Biomater Sci Polym Ed; 2009; 20(12):1763-79. PubMed ID: 19723440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration.
    Raeber GP; Lutolf MP; Hubbell JA
    Biophys J; 2005 Aug; 89(2):1374-88. PubMed ID: 15923238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropatterning of poly(ethylene glycol) diacrylate hydrogels.
    Ali S; Cuchiara ML; West JL
    Methods Cell Biol; 2014; 121():105-19. PubMed ID: 24560506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels.
    Gobin AS; West JL
    Biotechnol Prog; 2003; 19(6):1781-5. PubMed ID: 14656156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytically degradable hydrogels with a fluorogenic substrate for studies of cellular proteolytic activity and migration.
    Lee SH; Miller JS; Moon JJ; West JL
    Biotechnol Prog; 2005; 21(6):1736-41. PubMed ID: 16321059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment.
    Goktas M; Cinar G; Orujalipoor I; Ide S; Tekinay AB; Guler MO
    Biomacromolecules; 2015 Apr; 16(4):1247-58. PubMed ID: 25751623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of ligand surface concentration of bulk-modified biomimetic hydrogels.
    Behravesh E; Sikavitsas VI; Mikos AG
    Biomaterials; 2003 Nov; 24(24):4365-74. PubMed ID: 12922149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function.
    Lin CC; Anseth KS
    Proc Natl Acad Sci U S A; 2011 Apr; 108(16):6380-5. PubMed ID: 21464290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular matrix-mimetic poly(ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D.
    Lin L; Marchant RE; Zhu J; Kottke-Marchant K
    Acta Biomater; 2014 Dec; 10(12):5106-5115. PubMed ID: 25173839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrinogen-Based Hydrogel Modulus and Ligand Density Effects on Cell Morphogenesis in Two-Dimensional and Three-Dimensional Cell Cultures.
    Yosef A; Kossover O; Mironi-Harpaz I; Mauretti A; Melino S; Mizrahi J; Seliktar D
    Adv Healthc Mater; 2019 Jul; 8(13):e1801436. PubMed ID: 31081289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic-engineered poly (ethylene glycol) hydrogel for smooth muscle cell migration.
    Lin L; Zhu J; Kottke-Marchant K; Marchant RE
    Tissue Eng Part A; 2014 Feb; 20(3-4):864-73. PubMed ID: 24093717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slope-Dependent Cell Motility Enhancements at the Walls of PEG-Hydrogel Microgroove Structures.
    Kushiro K; Sakai T; Takai M
    Langmuir; 2015 Sep; 31(37):10215-22. PubMed ID: 26287573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides.
    Zhu J; Tang C; Kottke-Marchant K; Marchant RE
    Bioconjug Chem; 2009 Feb; 20(2):333-9. PubMed ID: 19191566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering.
    Mann BK; Gobin AS; Tsai AT; Schmedlen RH; West JL
    Biomaterials; 2001 Nov; 22(22):3045-51. PubMed ID: 11575479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation, maturation, and collection of THP-1-derived dendritic cells based on a PEG hydrogel culture platform.
    Choi J; Ki CS
    Biotechnol Lett; 2024 Apr; 46(2):235-247. PubMed ID: 38231384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional hMSC motility within peptide-functionalized PEG-based hydrogels of varying adhesivity and crosslinking density.
    Kyburz KA; Anseth KS
    Acta Biomater; 2013 May; 9(5):6381-92. PubMed ID: 23376239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.