BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23460081)

  • 1. Zinc-rich inhibitor of apoptosis proteins (IAPs) as regulatory factors in the epithelium of normal and inflamed airways.
    Roscioli E; Hamon R; Lester S; Murgia C; Grant J; Zalewski P
    Biometals; 2013 Apr; 26(2):205-27. PubMed ID: 23460081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apoptosis in the normal and inflamed airway epithelium: role of zinc in epithelial protection and procaspase-3 regulation.
    Truong-Tran AQ; Grosser D; Ruffin RE; Murgia C; Zalewski PD
    Biochem Pharmacol; 2003 Oct; 66(8):1459-68. PubMed ID: 14555222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc metabolism in the airway: basic mechanisms and drug targets.
    Zalewski PD
    Curr Opin Pharmacol; 2006 Jun; 6(3):237-43. PubMed ID: 16540372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apoptosis-regulatory factors as potential drug targets in the epithelium of normal and inflamed airways.
    Zalewski PD; Ruffin RE
    Curr Mol Pharmacol; 2008 Jan; 1(1):38-49. PubMed ID: 20021422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered zinc homeostasis and caspase-3 activity in murine allergic airway inflammation.
    Truong-Tran AQ; Ruffin RE; Foster PS; Koskinen AM; Coyle P; Philcox JC; Rofe AM; Zalewski PD
    Am J Respir Cell Mol Biol; 2002 Sep; 27(3):286-96. PubMed ID: 12204890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets. A review.
    Zalewski PD; Truong-Tran AQ; Grosser D; Jayaram L; Murgia C; Ruffin RE
    Pharmacol Ther; 2005 Feb; 105(2):127-49. PubMed ID: 15670623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The airway epithelium as regulator of inflammation patterns in asthma.
    Erjefält JS
    Clin Respir J; 2010 May; 4 Suppl 1():9-14. PubMed ID: 20500604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apical localization of zinc transporter ZnT4 in human airway epithelial cells and its loss in a murine model of allergic airway inflammation.
    Murgia C; Grosser D; Truong-Tran AQ; Roscioli E; Michalczyk A; Ackland ML; Stoltenberg M; Danscher G; Lang C; Knight D; Perozzi G; Ruffin RE; Zalewski P
    Nutrients; 2011 Nov; 3(11):910-28. PubMed ID: 22254085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma.
    Knight DA; Lim S; Scaffidi AK; Roche N; Chung KF; Stewart GA; Thompson PJ
    J Allergy Clin Immunol; 2001 Nov; 108(5):797-803. PubMed ID: 11692107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc suppressed the airway inflammation in asthmatic rats: effects of zinc on generation of eotaxin, MCP-1, IL-8, IL-4, and IFN-γ.
    Lu H; Xin Y; Tang Y; Shao G
    Biol Trace Elem Res; 2012 Dec; 150(1-3):314-21. PubMed ID: 22932891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IL-13 and TH2 cytokine exposure triggers matrix metalloproteinase 7-mediated Fas ligand cleavage from bronchial epithelial cells.
    Wadsworth SJ; Atsuta R; McIntyre JO; Hackett TL; Singhera GK; Dorscheid DR
    J Allergy Clin Immunol; 2010 Aug; 126(2):366-74, 374.e1-8. PubMed ID: 20624652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia response in asthma: differential modulation on inflammation and epithelial injury.
    Ahmad T; Kumar M; Mabalirajan U; Pattnaik B; Aggarwal S; Singh R; Singh S; Mukerji M; Ghosh B; Agrawal A
    Am J Respir Cell Mol Biol; 2012 Jul; 47(1):1-10. PubMed ID: 22312019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting apoptosis in prostate cancer: focus on caspases and inhibitors of apoptosis proteins.
    Watson RW; Fitzpatrick JM
    BJU Int; 2005 Dec; 96 Suppl 2():30-4. PubMed ID: 16359436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio.
    Mühlethaler-Mottet A; Flahaut M; Bourloud KB; Auderset K; Meier R; Joseph JM; Gross N
    BMC Cancer; 2006 Aug; 6():214. PubMed ID: 16930472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitor of apoptosis proteins: new therapeutic targets in hematological cancer?
    de Graaf AO; de Witte T; Jansen JH
    Leukemia; 2004 Nov; 18(11):1751-9. PubMed ID: 15457181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the role of zinc in the respiratory epithelium.
    Truong-Tran AQ; Carter J; Ruffin R; Zalewski PD
    Immunol Cell Biol; 2001 Apr; 79(2):170-7. PubMed ID: 11264713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemical inducers of apoptosis but not by death-receptor-initiated pathways.
    Ganju N; Eastman A
    Cell Death Differ; 2003 Jun; 10(6):652-61. PubMed ID: 12761574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticosteroid-induced apoptosis of airway epithelium: a potential mechanism for chronic airway epithelial damage in asthma.
    White SR; Dorscheid DR
    Chest; 2002 Dec; 122(6 Suppl):278S-284S. PubMed ID: 12475799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CASBAH: a searchable database of caspase substrates.
    Lüthi AU; Martin SJ
    Cell Death Differ; 2007 Apr; 14(4):641-50. PubMed ID: 17273173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caspase-2 is resistant to inhibition by inhibitor of apoptosis proteins (IAPs) and can activate caspase-7.
    Ho PK; Jabbour AM; Ekert PG; Hawkins CJ
    FEBS J; 2005 Mar; 272(6):1401-14. PubMed ID: 15752357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.