BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 23460580)

  • 1. Phototoxic effect of photodynamic therapy on lung cancer cells grown as a monolayer and three dimensional multicellular spheroids.
    Manoto SL; Houreld NN; Abrahamse H
    Lasers Surg Med; 2013 Mar; 45(3):186-94. PubMed ID: 23460580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance of lung cancer cells grown as multicellular tumour spheroids to zinc sulfophthalocyanine photosensitization.
    Manoto SL; Houreld NN; Abrahamse H
    Int J Mol Sci; 2015 May; 16(5):10185-200. PubMed ID: 25950764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization and phototoxic effect of zinc sulfophthalocyanine photosensitizer in human colon (DLD-1) and lung (A549) carcinoma cells (in vitro).
    Manoto SL; Sekhejane PR; Houreld NN; Abrahamse H
    Photodiagnosis Photodyn Ther; 2012 Mar; 9(1):52-9. PubMed ID: 22369729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modes of Cell Death Induced by Photodynamic Therapy Using Zinc Phthalocyanine in Lung Cancer Cells Grown as a Monolayer and Three-Dimensional Multicellular Spheroids.
    Manoto SL; Houreld N; Hodgkinson N; Abrahamse H
    Molecules; 2017 May; 22(5):. PubMed ID: 28509858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cervical cancer cells (HeLa) response to photodynamic therapy using a zinc phthalocyanine photosensitizer.
    Hodgkinson N; Kruger CA; Mokwena M; Abrahamse H
    J Photochem Photobiol B; 2017 Dec; 177():32-38. PubMed ID: 29045918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The primary subcellular localization of Zinc phthalocyanine and its cellular impact on viability, proliferation and structure of breast cancer cells (MCF-7).
    Tynga IM; Houreld NN; Abrahamse H
    J Photochem Photobiol B; 2013 Mar; 120():171-6. PubMed ID: 23266051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro photodynamic therapy on melanoma cell lines with phthalocyanine.
    Kolarova H; Nevrelova P; Bajgar R; Jirova D; Kejlova K; Strnad M
    Toxicol In Vitro; 2007 Mar; 21(2):249-53. PubMed ID: 17092686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Necrotic and apoptotic features of cell death in response to Foscan photosensitization of HT29 monolayer and multicell spheroids.
    Marchal S; Fadloun A; Maugain E; D'Hallewin MA; Guillemin F; Bezdetnaya L
    Biochem Pharmacol; 2005 Apr; 69(8):1167-76. PubMed ID: 15794937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel zinc phthalocyanine as a promising photosensitizer for photodynamic treatment of esophageal cancer.
    Kuzyniak W; Schmidt J; Glac W; Berkholz J; Steinemann G; Hoffmann B; Ermilov EA; Gürek AG; Ahsen V; Nitzsche B; Höpfner M
    Int J Oncol; 2017 Mar; 50(3):953-963. PubMed ID: 28098886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen dependence of two-photon activation of zinc and copper phthalocyanine tetrasulfonate in Jurkat cells.
    Mir Y; van Lier JE; Paquette B; Houde D
    Photochem Photobiol; 2008; 84(5):1182-6. PubMed ID: 18331397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the photodynamic effect on the A549 cell line by atomic force microscopy and the influence of green tea extract on the production of reactive oxygen species.
    Tomankova K; Kolarova H; Bajgar R; Jirova D; Kejlova K; Mosinger J
    Ann N Y Acad Sci; 2009 Aug; 1171():549-58. PubMed ID: 19723103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of cytotoxic effect of photodynamically and sonodynamically activated sensitizers in vitro.
    Tomankova K; Kolarova H; Kolar P; Kejlova K; Jirova D
    Toxicol In Vitro; 2009 Dec; 23(8):1465-71. PubMed ID: 19595758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines.
    Kolarova H; Tomankova K; Bajgar R; Kolar P; Kubinek R
    Ultrasound Med Biol; 2009 Aug; 35(8):1397-404. PubMed ID: 19515482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of photodynamic therapy supplemented with quercetin in HEp-2 cells.
    de Paula Rodrigues R; Tini IR; Soares CP; da Silva NS
    Cell Biol Int; 2014 Jun; 38(6):716-22. PubMed ID: 24470266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers.
    Pereira PMR; Berisha N; Bhupathiraju NVSDK; Fernandes R; Tomé JPC; Drain CM
    PLoS One; 2017; 12(5):e0177737. PubMed ID: 28545086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodynamic therapy of transitional cell carcinoma multicellular tumor spheroids with hypericin.
    Kamuhabwa AA; Huygens A; De Witte PA
    Int J Oncol; 2003 Nov; 23(5):1445-50. PubMed ID: 14532989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodynamic effects of ZnPcS(4)-BSA in human retinal pigment epithelium cells.
    Huang Y; Xu G; Peng Y; Chen S; Wu Y
    J Ocul Pharmacol Ther; 2009 Jun; 25(3):231-8. PubMed ID: 19456258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully protected glycosylated zinc (II) phthalocyanine shows high uptake and photodynamic cytotoxicity in MCF-7 cancer cells.
    Kimani SG; Shmigol TA; Hammond S; Phillips JB; Bruce JI; MacRobert AJ; Malakhov MV; Golding JP
    Photochem Photobiol; 2013; 89(1):139-49. PubMed ID: 22803957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a newly synthesized Zn sulfophthalocyanine derivative on cell morphology, viability, proliferation, and cytotoxicity in a human lung cancer cell line (A549).
    Manoto SL; Abrahamse H
    Lasers Med Sci; 2011 Jul; 26(4):523-30. PubMed ID: 21279402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Aberrations Associated with Photodynamic Therapy in Colorectal Cancer Cells.
    Abrahamse H; Houreld NN
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31269724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.