BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 23460641)

  • 1. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.
    Song Z; Liu C; Iwata J; Gu S; Suzuki A; Sun C; He W; Shu R; Li L; Chai Y; Chen Y
    J Biol Chem; 2013 Apr; 288(15):10440-50. PubMed ID: 23460641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells.
    Yumoto K; Thomas PS; Lane J; Matsuzaki K; Inagaki M; Ninomiya-Tsuji J; Scott GJ; Ray MK; Ishii M; Maxson R; Mishina Y; Kaartinen V
    J Biol Chem; 2013 May; 288(19):13467-80. PubMed ID: 23546880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.
    Parada C; Han D; Grimaldi A; Sarrión P; Park SS; Pelikan R; Sanchez-Lara PA; Chai Y
    Development; 2015 Nov; 142(21):3734-45. PubMed ID: 26395480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.
    Iwata J; Tung L; Urata M; Hacia JG; Pelikan R; Suzuki A; Ramenzoni L; Chaudhry O; Parada C; Sanchez-Lara PA; Chai Y
    J Biol Chem; 2012 Jan; 287(4):2353-63. PubMed ID: 22123828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ablation of the Sox11 Gene Results in Clefting of the Secondary Palate Resembling the Pierre Robin Sequence.
    Huang H; Yang X; Bao M; Cao H; Miao X; Zhang X; Gan L; Qiu M; Zhang Z
    J Biol Chem; 2016 Mar; 291(13):7107-18. PubMed ID: 26826126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.
    Almaidhan A; Cesario J; Landin Malt A; Zhao Y; Sharma N; Choi V; Jeong J
    BMC Dev Biol; 2014 Jan; 14():3. PubMed ID: 24433583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement of Hyaluronan Synthase-2 in Craniofacial and Palate Development.
    Lan Y; Qin C; Jiang R
    J Dent Res; 2019 Nov; 98(12):1367-1375. PubMed ID: 31509714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice.
    Chen Y; Wang Z; Chen Y; Zhang Y
    Cell Tissue Res; 2019 May; 376(2):199-210. PubMed ID: 30413887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis.
    Wang C; Chang JY; Yang C; Huang Y; Liu J; You P; McKeehan WL; Wang F; Li X
    J Biol Chem; 2013 Jul; 288(30):22174-83. PubMed ID: 23754280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling.
    Pelikan RC; Iwata J; Suzuki A; Chai Y; Hacia JG
    J Cell Biochem; 2013 Apr; 114(4):796-807. PubMed ID: 23060211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.
    Iwata J; Suzuki A; Pelikan RC; Ho TV; Sanchez-Lara PA; Chai Y
    Hum Mol Genet; 2014 Jan; 23(1):182-93. PubMed ID: 23975680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice.
    Alappat SR; Zhang Z; Suzuki K; Zhang X; Liu H; Jiang R; Yamada G; Chen Y
    Dev Biol; 2005 Jan; 277(1):102-13. PubMed ID: 15572143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prdm16 is required for normal palatogenesis in mice.
    Bjork BC; Turbe-Doan A; Prysak M; Herron BJ; Beier DR
    Hum Mol Genet; 2010 Mar; 19(5):774-89. PubMed ID: 20007998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development.
    Lane J; Yumoto K; Azhar M; Ninomiya-Tsuji J; Inagaki M; Hu Y; Deng CX; Kim J; Mishina Y; Kaartinen V
    Dev Biol; 2015 Feb; 398(2):231-41. PubMed ID: 25523394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dislocated Tongue Muscle Attachment and Cleft Palate Formation.
    Kouskoura T; El Fersioui Y; Angelini M; Graf D; Katsaros C; Chiquet M
    J Dent Res; 2016 Apr; 95(4):453-9. PubMed ID: 26701347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-specific analysis of Fgf18 gene function in palate development.
    Yue M; Lan Y; Liu H; Wu Z; Imamura T; Jiang R
    Dev Dyn; 2021 Apr; 250(4):562-573. PubMed ID: 33034111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gli3-deficient mice exhibit cleft palate associated with abnormal tongue development.
    Huang X; Goudy SL; Ketova T; Litingtung Y; Chiang C
    Dev Dyn; 2008 Oct; 237(10):3079-87. PubMed ID: 18816854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme.
    Nik AM; Johansson JA; Ghiami M; Reyahi A; Carlsson P
    Dev Biol; 2016 Jul; 415(1):14-23. PubMed ID: 27180663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.
    Tian H; Feng J; Li J; Ho TV; Yuan Y; Liu Y; Brindopke F; Figueiredo JC; Magee W; Sanchez-Lara PA; Chai Y
    Hum Mol Genet; 2017 Mar; 26(5):860-872. PubMed ID: 28069795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.