BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23460818)

  • 1. Enhancing bioaerosol sampling by Andersen impactors using mineral-oil-spread agar plate.
    Xu Z; Wei K; Wu Y; Shen F; Chen Q; Li M; Yao M
    PLoS One; 2013; 8(2):e56896. PubMed ID: 23460818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applicability of a modified MCE filter method with Button Inhalable Sampler for monitoring personal bioaerosol inhalation exposure.
    Xu Z; Xu H; Yao M
    Environ Sci Pollut Res Int; 2013 May; 20(5):2963-72. PubMed ID: 23054771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-flow portable biological aerosol trap (HighBioTrap) for rapid microbial detection.
    Chen H; Yao M
    J Aerosol Sci; 2018 Mar; 117():212-223. PubMed ID: 32372770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of high volume portable aerosol-to-hydrosol sampling and qPCR in monitoring bioaerosols.
    He Q; Yao M
    J Environ Monit; 2011 Mar; 13(3):706-12. PubMed ID: 21258725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of bioaerosol inhalation risks in different environments using a six-stage Andersen sampler and the PCR-DGGE method.
    Xu Z; Yao M
    Environ Monit Assess; 2013 May; 185(5):3993-4003. PubMed ID: 22955887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of bioaerosol samplers for the detection and quantification of influenza virus from artificial aerosols and influenza virus-infected ferrets.
    Bekking C; Yip L; Groulx N; Doggett N; Finn M; Mubareka S
    Influenza Other Respir Viruses; 2019 Nov; 13(6):564-573. PubMed ID: 31541519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Three Air Sampling Methods for the Quantification of Salmonella, Shiga-toxigenic Escherichia coli (STEC), Coliforms, and Generic E. coli from Bioaerosols of Cattle and Poultry Farms.
    Ruiz-Llacsahuanga B; Sanchez-Tamayo M; Kumar GD; Critzer F
    J Food Prot; 2024 Jun; 87(6):100282. PubMed ID: 38663638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a size-selective sampler combined with an adenosine triphosphate bioluminescence assay for the rapid measurement of bioaerosols.
    Liao L; Byeon JH; Park JH
    Environ Res; 2021 Mar; 194():110615. PubMed ID: 33309960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.
    Park JW; Kim HR; Hwang J
    Anal Chim Acta; 2016 Oct; 941():101-107. PubMed ID: 27692374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria.
    Jensen PA; Todd WF; Davis GN; Scarpino PV
    Am Ind Hyg Assoc J; 1992 Oct; 53(10):660-7. PubMed ID: 1456208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of portable impactor performance for enumeration of viable bioaerosols.
    Yao M; Mainelis G
    J Occup Environ Hyg; 2007 Jul; 4(7):514-24. PubMed ID: 17538812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personal sampling impactor with respirable aerosol penetration characteristics.
    Marple VA; McCormack JE
    Am Ind Hyg Assoc J; 1983 Dec; 44(12):916-22. PubMed ID: 6660192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airborne virus sampling: Efficiencies of samplers and their detection limits for infectious bursal disease virus (IBDV).
    Zhao Y; Aarnink AJ; Wang W; Fabri T; Groot Koerkamp PW; de Jong MC
    Ann Agric Environ Med; 2014; 21(3):464-71. PubMed ID: 25292111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Three-Stage Bioaerosol Sampler for Size-Selective Sampling.
    Lim JH; Nam SH; Kim J; Kim NH; Park GS; Maeng JS; Yook SJ
    J Biomech Eng; 2022 Jul; 144(7):. PubMed ID: 35013744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A small change in the design of a slit bioaerosol impactor significantly improves its collection characteristics.
    Grinshpun SA; Adhikari A; Cho SH; Kim KY; Lee T; Reponen T
    J Environ Monit; 2007 Aug; 9(8):855-61. PubMed ID: 17671667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The suitability of the IOM foam sampler for bioaerosol sampling in Occupational Environments.
    Haatainen S; Laitinen J; Linnainmaa M; Reponen T; Kalliokoski P
    J Occup Environ Hyg; 2010 Jan; 7(1):1-6. PubMed ID: 19904652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distortion of cascade impactor measured size distribution due to bounce and blow-off.
    Esmen NA; Lee TC
    Am Ind Hyg Assoc J; 1980 Jun; 41(6):410-9. PubMed ID: 7395754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of impact stress on microbial recovery on an agar surface.
    Stewart SL; Grinshpun SA; Willeke K; Terzieva S; Ulevicius V; Donnelly J
    Appl Environ Microbiol; 1995 Apr; 61(4):1232-9. PubMed ID: 7747946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaction onto a Glass Slide or Agar versus Impingement into a Liquid for the Collection and Recovery of Airborne Microorganisms.
    Juozaitis A; Willeke K; Grinshpun SA; Donnelly J
    Appl Environ Microbiol; 1994 Mar; 60(3):861-70. PubMed ID: 16349217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collection efficiency of liquid-based samplers for fungi in indoor air.
    Chang CW; Ting YT; Horng YJ
    Indoor Air; 2019 May; 29(3):380-389. PubMed ID: 30614570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.