BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23461393)

  • 1. Membrane orientation of Gα(i)β(1)γ(2) and Gβ(1)γ(2) determined via combined vibrational spectroscopic studies.
    Yang P; Boughton A; Homan KT; Tesmer JJ; Chen Z
    J Am Chem Soc; 2013 Apr; 135(13):5044-51. PubMed ID: 23461393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Lipid Composition on the Membrane Orientation of the G Protein-Coupled Receptor Kinase 2-Gβ1γ2 Complex.
    Yang P; Homan KT; Li Y; Cruz-Rodríguez O; Tesmer JJ; Chen Z
    Biochemistry; 2016 May; 55(20):2841-8. PubMed ID: 27088923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane orientation and binding determinants of G protein-coupled receptor kinase 5 as assessed by combined vibrational spectroscopic studies.
    Yang P; Glukhova A; Tesmer JJ; Chen Z
    PLoS One; 2013; 8(11):e82072. PubMed ID: 24278472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of alamethicin with model cell membranes investigated using sum frequency generation vibrational spectroscopy in real time in situ.
    Ye S; Nguyen KT; Chen Z
    J Phys Chem B; 2010 Mar; 114(9):3334-40. PubMed ID: 20163089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterotrimeric G protein beta1gamma2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane.
    Boughton AP; Yang P; Tesmer VM; Ding B; Tesmer JJ; Chen Z
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):E667-73. PubMed ID: 21876134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observing a model ion channel gating action in model cell membranes in real time in situ: membrane potential change induced alamethicin orientation change.
    Ye S; Li H; Wei F; Jasensky J; Boughton AP; Yang P; Chen Z
    J Am Chem Soc; 2012 Apr; 134(14):6237-43. PubMed ID: 22420296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular interactions between cell penetrating peptide Pep-1 and model cell membranes.
    Ding B; Chen Z
    J Phys Chem B; 2012 Mar; 116(8):2545-52. PubMed ID: 22292835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation determination of interfacial beta-sheet structures in situ.
    Nguyen KT; King JT; Chen Z
    J Phys Chem B; 2010 Jul; 114(25):8291-300. PubMed ID: 20504035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ molecular-level insights into the interfacial structure changes of membrane-associated prion protein fragment [118-135] investigated by sum frequency generation vibrational spectroscopy.
    Li H; Ye S; Wei F; Ma S; Luo Y
    Langmuir; 2012 Dec; 28(49):16979-88. PubMed ID: 23116165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation determination of protein helical secondary structures using linear and nonlinear vibrational spectroscopy.
    Nguyen KT; Le Clair SV; Ye S; Chen Z
    J Phys Chem B; 2009 Sep; 113(36):12169-80. PubMed ID: 19650636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple orientation of melittin inside a single lipid bilayer determined by combined vibrational spectroscopic studies.
    Chen X; Wang J; Boughton AP; Kristalyn CB; Chen Z
    J Am Chem Soc; 2007 Feb; 129(5):1420-7. PubMed ID: 17263427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy.
    Ding B; Jasensky J; Li Y; Chen Z
    Acc Chem Res; 2016 Jun; 49(6):1149-57. PubMed ID: 27188920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial orientation and secondary structure change in tachyplesin I: molecular dynamics and sum frequency generation spectroscopy studies.
    Boughton AP; Nguyen K; Andricioaei I; Chen Z
    Langmuir; 2011 Dec; 27(23):14343-51. PubMed ID: 22054114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of activity and subunit recognition in G protein heterotrimers.
    Wall MA; Posner BA; Sprang SR
    Structure; 1998 Sep; 6(9):1169-83. PubMed ID: 9753695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the membrane-binding properties of N-terminal and C-terminal regions of G protein-coupled receptor kinase 5 by combined optical spectroscopies.
    Ding B; Glukhova A; Sobczyk-Kojiro K; Mosberg HI; Tesmer JJ; Chen Z
    Langmuir; 2014 Jan; 30(3):823-31. PubMed ID: 24401145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ molecular level studies on membrane related peptides and proteins in real time using sum frequency generation vibrational spectroscopy.
    Ye S; Nguyen KT; Le Clair SV; Chen Z
    J Struct Biol; 2009 Oct; 168(1):61-77. PubMed ID: 19306928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy.
    Tatulian SA
    Methods Mol Biol; 2013; 974():177-218. PubMed ID: 23404277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes.
    Gazit E; Miller IR; Biggin PC; Sansom MS; Shai Y
    J Mol Biol; 1996 May; 258(5):860-70. PubMed ID: 8637016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and orientation of interfacial proteins determined by sum frequency generation vibrational spectroscopy: method and application.
    Ye S; Wei F; Li H; Tian K; Luo Y
    Adv Protein Chem Struct Biol; 2013; 93():213-55. PubMed ID: 24018327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation in lipid bilayers of a synthetic peptide representing the C-terminus of the A1 domain of shiga toxin. A polarized ATR-FTIR study.
    Menikh A; Saleh MT; Gariépy J; Boggs JM
    Biochemistry; 1997 Dec; 36(50):15865-72. PubMed ID: 9398319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.