These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 23461419)

  • 1. Chemical vapor deposition synthesis and Raman spectroscopic characterization of large-area graphene sheets.
    Liao CD; Lu YY; Tamalampudi SR; Cheng HC; Chen YT
    J Phys Chem A; 2013 Oct; 117(39):9454-61. PubMed ID: 23461419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of chemical vapor deposition of graphene and related applications.
    Zhang Y; Zhang L; Zhou C
    Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Few-layer graphene direct deposition on Ni and Cu foil by cold-wall chemical vapor deposition.
    Chang QH; Guo GL; Wang T; Ji LC; Huang L; Ling B; Yang HF
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6516-20. PubMed ID: 22962776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.
    Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS
    Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene growth at the interface between Ni catalyst layer and SiO2/Si substrate.
    Lee JH; Song KW; Park MH; Kim HK; Yang CW
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6468-71. PubMed ID: 22121737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient preparation of large-area graphene oxide sheets for transparent conductive films.
    Zhao J; Pei S; Ren W; Gao L; Cheng HM
    ACS Nano; 2010 Sep; 4(9):5245-52. PubMed ID: 20815368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniformity of large-area bilayer graphene grown by chemical vapor deposition.
    Sheng Y; Rong Y; He Z; Fan Y; Warner JH
    Nanotechnology; 2015 Oct; 26(39):395601. PubMed ID: 26349521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD.
    Ge W; Kawahara K; Tsuji M; Ago H
    Nanoscale; 2013 Jul; 5(13):5773-8. PubMed ID: 23616056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly.
    Zheng Q; Ip WH; Lin X; Yousefi N; Yeung KK; Li Z; Kim JK
    ACS Nano; 2011 Jul; 5(7):6039-51. PubMed ID: 21692470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, electronic and gas-sensing properties towards H2 and CO of transparent, large-area, low-layer graphene.
    Kayhan E; Prasad RM; Gurlo A; Yilmazoglu O; Engstler J; Ionescu E; Yoon S; Weidenkaff A; Schneider JJ
    Chemistry; 2012 Nov; 18(47):14996-5003. PubMed ID: 23032996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations.
    Zhao H; Lin YC; Yeh CH; Tian H; Chen YC; Xie D; Yang Y; Suenaga K; Ren TL; Chiu PW
    ACS Nano; 2014 Oct; 8(10):10766-73. PubMed ID: 25295851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Temperature Chemical Vapor Deposition Growth of Graphene Layers on Copper Substrate Using Camphor Precursor.
    Kavitha K; Urade AR; Kaur G; Lahiri I
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7698-7704. PubMed ID: 32711645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centimeter-scale high-resolution metrology of entire CVD-grown graphene sheets.
    Kyle JR; Guvenc A; Wang W; Ghazinejad M; Lin J; Guo S; Ozkan CS; Ozkan M
    Small; 2011 Sep; 7(18):2598-606. PubMed ID: 21815266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible electrochromic films based on CVD-graphene electrodes.
    Soo Choi D; Ho Han S; Kim H; Hee Kang S; Kim Y; Yang CM; Kim TY; Ho Yoon D; Seok Yang W
    Nanotechnology; 2014 Oct; 25(39):395702. PubMed ID: 25201016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition.
    Lee D; Kwon GD; Kim JH; Moyen E; Lee YH; Baik S; Pribat D
    Nanoscale; 2014 Nov; 6(21):12943-51. PubMed ID: 25233143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities.
    Kahng YH; Lee S; Park W; Jo G; Choe M; Lee JH; Yu H; Lee T; Lee K
    Nanotechnology; 2012 Feb; 23(7):075702. PubMed ID: 22261350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.