These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 23461597)
21. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Zhai Y; Ma Y; David SN; Zhao D; Lou R; Tan G; Yang R; Yin X Science; 2017 Mar; 355(6329):1062-1066. PubMed ID: 28183998 [TBL] [Abstract][Full Text] [Related]
22. Daytime Radiative Cooling Coating Based on the Y Du T; Niu J; Wang L; Bai J; Wang S; Li S; Fan Y ACS Appl Mater Interfaces; 2022 Nov; 14(45):51351-51360. PubMed ID: 36332077 [TBL] [Abstract][Full Text] [Related]
23. High-Performance Daytime Radiative Cooler and Near-Ideal Selective Emitter Enabled by Transparent Sapphire Substrate. Chae D; Son S; Liu Y; Lim H; Lee H Adv Sci (Weinh); 2020 Oct; 7(19):2001577. PubMed ID: 33042765 [TBL] [Abstract][Full Text] [Related]
24. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range. Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771 [TBL] [Abstract][Full Text] [Related]
25. Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling. Zhang J; Zhou Z; Tang H; Xing J; Quan J; Liu J; Yu J; Hu M ACS Appl Mater Interfaces; 2021 Mar; 13(12):14132-14140. PubMed ID: 33724770 [TBL] [Abstract][Full Text] [Related]
26. Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling. Son S; Liu Y; Chae D; Lee H ACS Appl Mater Interfaces; 2020 Dec; 12(52):57832-57839. PubMed ID: 33345542 [TBL] [Abstract][Full Text] [Related]
27. Photonic structures in radiative cooling. Lee M; Kim G; Jung Y; Pyun KR; Lee J; Kim BW; Ko SH Light Sci Appl; 2023 Jun; 12(1):134. PubMed ID: 37264035 [TBL] [Abstract][Full Text] [Related]
28. Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures. Perrakis G; Tasolamprou AC; Kenanakis G; Economou EN; Tzortzakis S; Kafesaki M Opt Express; 2020 Jun; 28(13):18548-18565. PubMed ID: 32672154 [TBL] [Abstract][Full Text] [Related]
29. Superhydrophobic and Recyclable Cellulose-Fiber-Based Composites for High-Efficiency Passive Radiative Cooling. Tian Y; Shao H; Liu X; Chen F; Li Y; Tang C; Zheng Y ACS Appl Mater Interfaces; 2021 May; 13(19):22521-22530. PubMed ID: 33950669 [TBL] [Abstract][Full Text] [Related]
31. Metal-free design of a multilayered metamaterial with chirped Bragg grating for enhanced radiative cooling. Osuna Ruiz D; Lezaun C; Torres-García AE; Beruete M Opt Express; 2023 Jul; 31(14):22698-22709. PubMed ID: 37475374 [TBL] [Abstract][Full Text] [Related]
32. Robust Inorganic Daytime Radiative Cooling Coating Based on a Phosphate Geopolymer. Chen G; Wang Y; Qiu J; Cao J; Zou Y; Wang S; Jia D; Zhou Y ACS Appl Mater Interfaces; 2020 Dec; 12(49):54963-54971. PubMed ID: 33226211 [TBL] [Abstract][Full Text] [Related]
33. Hierarchical Superhydrophobic Poly(vinylidene fluoride- Meng X; Chen Z; Qian C; Song Z; Wang L; Li Q; Chen X ACS Appl Mater Interfaces; 2023 Jan; 15(1):2256-2266. PubMed ID: 36541618 [TBL] [Abstract][Full Text] [Related]
34. A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling. Liu S; Sui C; Harbinson M; Pudlo M; Perera H; Zhang Z; Liu R; Ku Z; Islam MD; Liu Y; Wu R; Zhu Y; Genzer J; Khan SA; Hsu PC; Ryu JE Nano Lett; 2023 Sep; 23(17):7767-7774. PubMed ID: 37487140 [TBL] [Abstract][Full Text] [Related]
35. Passive directional sub-ambient daytime radiative cooling. Bhatia B; Leroy A; Shen Y; Zhao L; Gianello M; Li D; Gu T; Hu J; Soljačić M; Wang EN Nat Commun; 2018 Nov; 9(1):5001. PubMed ID: 30479326 [TBL] [Abstract][Full Text] [Related]
36. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling. Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188 [TBL] [Abstract][Full Text] [Related]
37. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Zhu L; Raman AP; Fan S Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12282-7. PubMed ID: 26392542 [TBL] [Abstract][Full Text] [Related]
38. Anti-Environmental Aging Passive Daytime Radiative Cooling. Song J; Shen Q; Shao H; Deng X Adv Sci (Weinh); 2024 Mar; 11(10):e2305664. PubMed ID: 38148594 [TBL] [Abstract][Full Text] [Related]
39. Daytime radiative cooling multilayer films designed by a machine learning method and genetic algorithm. Li S; An M; Zheng Z; Gou Y; Lian W; Yu W; Zhang P Appl Opt; 2023 Jun; 62(16):4359-4369. PubMed ID: 37706929 [TBL] [Abstract][Full Text] [Related]
40. High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure. Zhou J; Ding C; Zhang X; Li D; Yang D; You B; Wu L ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38032275 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]