These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 23461597)

  • 41. Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications.
    Zhang Q; Wang S; Wang X; Jiang Y; Li J; Xu W; Zhu B; Zhu J
    Small Methods; 2022 Apr; 6(4):e2101379. PubMed ID: 35212488
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Subambient daytime radiative cooling textile based on nanoprocessed silk.
    Zhu B; Li W; Zhang Q; Li D; Liu X; Wang Y; Xu N; Wu Z; Li J; Li X; Catrysse PB; Xu W; Fan S; Zhu J
    Nat Nanotechnol; 2021 Dec; 16(12):1342-1348. PubMed ID: 34750560
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Self-Assembled 2D Thermofunctional Material for Radiative Cooling.
    Jaramillo-Fernandez J; Whitworth GL; Pariente JA; Blanco A; Garcia PD; Lopez C; Sotomayor-Torres CM
    Small; 2019 Dec; 15(52):e1905290. PubMed ID: 31650687
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Daytime Sub-Ambient Radiative Cooling with Vivid Structural Colors Mediated by Coupled Nanocavities.
    Jin S; Xiao M; Zhang W; Wang B; Zhao C
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54676-54687. PubMed ID: 36454716
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly-Scattering Cellulose-Based Films for Radiative Cooling.
    Jaramillo-Fernandez J; Yang H; Schertel L; Whitworth GL; Garcia PD; Vignolini S; Sotomayor-Torres CM
    Adv Sci (Weinh); 2022 Mar; 9(8):e2104758. PubMed ID: 35038253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Colloidal Photonic Assemblies for Colorful Radiative Cooling.
    Kim HH; Im E; Lee S
    Langmuir; 2020 Jun; 36(23):6589-6596. PubMed ID: 32370514
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined nano and micro structuring for enhanced radiative cooling and efficiency of photovoltaic cells.
    Perrakis G; Tasolamprou AC; Kenanakis G; Economou EN; Tzortzakis S; Kafesaki M
    Sci Rep; 2021 Jun; 11(1):11552. PubMed ID: 34079009
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hierarchically Hollow Microfibers as a Scalable and Effective Thermal Insulating Cooler for Buildings.
    Zhong H; Li Y; Zhang P; Gao S; Liu B; Wang Y; Meng T; Zhou Y; Hou H; Xue C; Zhao Y; Wang Z
    ACS Nano; 2021 Jun; 15(6):10076-10083. PubMed ID: 34014070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spider-Silk-Inspired Nanocomposite Polymers for Durable Daytime Radiative Cooling.
    Yao P; Chen Z; Liu T; Liao X; Yang Z; Li J; Jiang Y; Xu N; Li W; Zhu B; Zhu J
    Adv Mater; 2022 Dec; 34(51):e2208236. PubMed ID: 36255146
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Easy Way to Achieve Self-Adaptive Cooling of Passive Radiative Materials.
    Xia Z; Fang Z; Zhang Z; Shi K; Meng Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27241-27248. PubMed ID: 32437122
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Pragmatic Bilayer Selective Emitter for Efficient Radiative Cooling under Direct Sunlight.
    Liu Y; Bai A; Fang Z; Ni Y; Lu C; Xu Z
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013849
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A tailored indoor setup for reproducible passive daytime cooling characterization.
    Song Q; Tran T; Herrmann K; Lauster T; Breitenbach M; Retsch M
    Cell Rep Phys Sci; 2022 Aug; 3(8):100986. PubMed ID: 36003305
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sustainable and Inexpensive Polydimethylsiloxane Sponges for Daytime Radiative Cooling.
    Zhou L; Rada J; Zhang H; Song H; Mirniaharikandi S; Ooi BS; Gan Q
    Adv Sci (Weinh); 2021 Dec; 8(23):e2102502. PubMed ID: 34672111
    [TBL] [Abstract][Full Text] [Related]  

  • 54.
    Wang W; Zou Q; Wang N; Hong B; Zhang W; Wang GP
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42813-42821. PubMed ID: 34460215
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Designing Mesoporous Photonic Structures for High-Performance Passive Daytime Radiative Cooling.
    Chen M; Pang D; Mandal J; Chen X; Yan H; He Y; Yu N; Yang Y
    Nano Lett; 2021 Feb; 21(3):1412-1418. PubMed ID: 33524258
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aerogel-Functionalized Thermoplastic Polyurethane as Waterproof, Breathable Freestanding Films and Coatings for Passive Daytime Radiative Cooling.
    Shan X; Liu L; Wu Y; Yuan D; Wang J; Zhang C; Wang J
    Adv Sci (Weinh); 2022 Jul; 9(20):e2201190. PubMed ID: 35474617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of Dielectric-Metal Multilayer Structure for Color-Preserving Radiative Cooling Window.
    Liu G; Chen S; Lin C
    ACS Omega; 2024 Jul; 9(28):30425-30435. PubMed ID: 39035978
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A solution-processed radiative cooling glass.
    Zhao X; Li T; Xie H; Liu H; Wang L; Qu Y; Li SC; Liu S; Brozena AH; Yu Z; Srebric J; Hu L
    Science; 2023 Nov; 382(6671):684-691. PubMed ID: 37943922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ordered-Porous-Array Polymethyl Methacrylate Films for Radiative Cooling.
    Qi G; Tan X; Tu Y; Yang X; Qiao Y; Wang Y; Geng J; Yao S; Chen X
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31277-31284. PubMed ID: 35771521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design of radiative cooler based on porous TiO
    Zahir M; Benlattar M
    Appl Opt; 2021 Jan; 60(2):445-451. PubMed ID: 33448976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.