BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 23461821)

  • 1. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction.
    Baruah B; Gabriel GJ; Akbashev MJ; Booher ME
    Langmuir; 2013 Apr; 29(13):4225-34. PubMed ID: 23461821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel.
    Ai L; Jiang J
    Bioresour Technol; 2013 Mar; 132():374-7. PubMed ID: 23206807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol.
    Narayanan KB; Park HH; Sakthivel N
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():485-90. PubMed ID: 23973598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver nanoparticles-decorated polyphosphazene nanotubes: synthesis and applications.
    Wang M; Fu J; Huang D; Zhang C; Xu Q
    Nanoscale; 2013 Sep; 5(17):7913-9. PubMed ID: 23852037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction.
    Chiou JR; Lai BH; Hsu KC; Chen DH
    J Hazard Mater; 2013 Mar; 248-249():394-400. PubMed ID: 23416483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract.
    Mohanty AS; Jena BS
    J Colloid Interface Sci; 2017 Jun; 496():513-521. PubMed ID: 28259017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides.
    Gangula A; Podila R; M R; Karanam L; Janardhana C; Rao AM
    Langmuir; 2011 Dec; 27(24):15268-74. PubMed ID: 22026721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol.
    Zhang P; Shao C; Zhang Z; Zhang M; Mu J; Guo Z; Liu Y
    Nanoscale; 2011 Aug; 3(8):3357-63. PubMed ID: 21761072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of catalytic silver nanoparticles modulated by capping agent hydrophobicity.
    Janani S; Stevenson P; Veerappan A
    Colloids Surf B Biointerfaces; 2014 May; 117():528-33. PubMed ID: 24698147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.
    Naraginti S; Sivakumar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():357-62. PubMed ID: 24681320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol.
    Zhang W; Tan F; Wang W; Qiu X; Qiao X; Chen J
    J Hazard Mater; 2012 May; 217-218():36-42. PubMed ID: 22459973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower.
    Vidhu VK; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():102-8. PubMed ID: 23988525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol.
    Alshehri SM; Almuqati T; Almuqati N; Al-Farraj E; Alhokbany N; Ahamad T
    Carbohydr Polym; 2016 Oct; 151():135-143. PubMed ID: 27474552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoconversion of 4-nitrophenol in the presence of hydrazine with AgNPs-TiO2 nanoparticles prepared by the sol-gel method.
    Hernández-Gordillo A; Arroyo M; Zanella R; Rodríguez-González V
    J Hazard Mater; 2014 Mar; 268():84-91. PubMed ID: 24468530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye.
    Edison TN; Lee YR; Sethuraman MG
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 May; 161():122-9. PubMed ID: 26967513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol.
    Edison TJ; Sethuraman MG
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():262-4. PubMed ID: 23274256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe
    Veisi H; Moradi SB; Saljooqi A; Safarimehr P
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():445-452. PubMed ID: 30948080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers.
    Zhang L; Shen Y; Xie A; Li S; Jin B; Zhang Q
    J Phys Chem B; 2006 Apr; 110(13):6615-20. PubMed ID: 16570962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids.
    Dubey SP; Lahtinen M; Särkkä H; Sillanpää M
    Colloids Surf B Biointerfaces; 2010 Oct; 80(1):26-33. PubMed ID: 20620889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.