These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23462176)

  • 21. Field evaluation of 2 collar-mounted activity meters for detecting cows in estrus on a large pasture-grazed dairy farm.
    Kamphuis C; DelaRue B; Burke CR; Jago J
    J Dairy Sci; 2012 Jun; 95(6):3045-56. PubMed ID: 22612940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combination of Sensor Data and Health Monitoring for Early Detection of Subclinical Ketosis in Dairy Cows.
    Sturm V; Efrosinin D; Öhlschuster M; Gusterer E; Drillich M; Iwersen M
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Implementation of multivariate cumulative sum control charts in mastitis and lameness monitoring.
    Miekley B; Stamer E; Traulsen I; Krieter J
    J Dairy Sci; 2013 Sep; 96(9):5723-33. PubMed ID: 23849640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensors and clinical mastitis--the quest for the perfect alert.
    Hogeveen H; Kamphuis C; Steeneveld W; Mollenhorst H
    Sensors (Basel); 2010; 10(9):7991-8009. PubMed ID: 22163637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Farm-specific economic value of automatic lameness detection systems in dairy cattle: From concepts to operational simulations.
    Van De Gucht T; Saeys W; Van Meensel J; Van Nuffel A; Vangeyte J; Lauwers L
    J Dairy Sci; 2018 Jan; 101(1):637-648. PubMed ID: 29102143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Delaying investments in sensor technology: The rationality of dairy farmers' investment decisions illustrated within the framework of real options theory.
    Rutten CJ; Steeneveld W; Oude Lansink AGJM; Hogeveen H
    J Dairy Sci; 2018 Aug; 101(8):7650-7660. PubMed ID: 29729913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction.
    Kamphuis C; Mollenhorst H; Heesterbeek JA; Hogeveen H
    J Dairy Sci; 2010 Aug; 93(8):3616-27. PubMed ID: 20655431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of protocols to evaluate in-line mastitis-detection systems.
    Kamphuis C; Dela Rue B; Mein G; Jago J
    J Dairy Sci; 2013 Jun; 96(6):4047-58. PubMed ID: 23548290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Risk factors for clinical mastitis, ketosis, and pneumonia in dairy cattle on organic and small conventional farms in the United States.
    Richert RM; Cicconi KM; Gamroth MJ; Schukken YH; Stiglbauer KE; Ruegg PL
    J Dairy Sci; 2013 Jul; 96(7):4269-85. PubMed ID: 23684015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering to support wellbeing of dairy animals.
    Caja G; Castro-Costa A; Knight CH
    J Dairy Res; 2016 May; 83(2):136-47. PubMed ID: 27210489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The economics of sensor-based management of dairy cow suboptimal mobility.
    Edwardes F; van der Voort M; Hogeveen H
    J Dairy Sci; 2022 Nov; 105(12):9682-9701. PubMed ID: 36270876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Principal component analysis for the early detection of mastitis and lameness in dairy cows.
    Miekley B; Traulsen I; Krieter J
    J Dairy Res; 2013 Aug; 80(3):335-43. PubMed ID: 23823869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the use of physical activity monitoring for estrus detection in dairy cows.
    Løvendahl P; Chagunda MG
    J Dairy Sci; 2010 Jan; 93(1):249-59. PubMed ID: 20059923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of three devices for the automated detection of estrus in dairy cows.
    Chanvallon A; Coyral-Castel S; Gatien J; Lamy JM; Ribaud D; Allain C; Clément P; Salvetti P
    Theriogenology; 2014 Sep; 82(5):734-41. PubMed ID: 25023294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of modeled sampling strategies for estimation of dairy herd lameness prevalence and cow-level variables associated with lameness.
    Hoffman AC; Moore DA; Wenz JR; Vanegas J
    J Dairy Sci; 2013 Sep; 96(9):5746-55. PubMed ID: 23849635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Welfare Quality
    Maroto Molina F; Pérez Marín CC; Molina Moreno L; Agüera Buendía EI; Pérez Marín DC
    J Dairy Res; 2020 Aug; 87(S1):28-33. PubMed ID: 33213579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Major advances in disease prevention in dairy cattle.
    LeBlanc SJ; Lissemore KD; Kelton DF; Duffield TF; Leslie KE
    J Dairy Sci; 2006 Apr; 89(4):1267-79. PubMed ID: 16537959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applicability of day-to-day variation in behavior for the automated detection of lameness in dairy cows.
    de Mol RM; André G; Bleumer EJ; van der Werf JT; de Haas Y; van Reenen CG
    J Dairy Sci; 2013 Jun; 96(6):3703-12. PubMed ID: 23548300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Association of production diseases with motor activity-sensing devices and milk progesterone concentrations in dairy cows.
    Williams J; Ntallaris T; Routly JE; Jones DN; Cameron J; Holman-Coates A; Smith RF; Humblot P; Dobson H
    Theriogenology; 2018 Sep; 118():57-62. PubMed ID: 29885641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring individual cow udder health in automated milking systems using online somatic cell counts.
    Sørensen LP; Bjerring M; Løvendahl P
    J Dairy Sci; 2016 Jan; 99(1):608-20. PubMed ID: 26547650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.