These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 23462233)

  • 1. Aldehyde oxidase importance in vivo in xenobiotic metabolism: imidacloprid nitroreduction in mice.
    Swenson TL; Casida JE
    Toxicol Sci; 2013 May; 133(1):22-8. PubMed ID: 23462233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate specificity of rabbit aldehyde oxidase for nitroguanidine and nitromethylene neonicotinoid insecticides.
    Dick RA; Kanne DB; Casida JE
    Chem Res Toxicol; 2006 Jan; 19(1):38-43. PubMed ID: 16411654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of aldehyde oxidase as the neonicotinoid nitroreductase.
    Dick RA; Kanne DB; Casida JE
    Chem Res Toxicol; 2005 Feb; 18(2):317-23. PubMed ID: 15720138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitroso-imidacloprid irreversibly inhibits rabbit aldehyde oxidase.
    Dick RA; Kanne DB; Casida JE
    Chem Res Toxicol; 2007 Dec; 20(12):1942-6. PubMed ID: 18001059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Hydroxylation and Nitroreduction Pathways during Metabolism of the Neonicotinoid Insecticide Imidacloprid by Pseudomonas putida.
    Lu TQ; Mao SY; Sun SL; Yang WL; Ge F; Dai YJ
    J Agric Food Chem; 2016 Jun; 64(24):4866-75. PubMed ID: 27230024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neonicotinoid insecticides: reduction and cleavage of imidacloprid nitroimine substituent by liver microsomal and cytosolic enzymes.
    Schulz-Jander DA; Leimkuehler WM; Casida JE
    Chem Res Toxicol; 2002 Sep; 15(9):1158-65. PubMed ID: 12230409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The metabolism of imidacloprid by aldehyde oxidase contributes to its clastogenic effect in New Zealand rabbits.
    Vardavas AI; Ozcagli E; Fragkiadaki P; Stivaktakis PD; Tzatzarakis MN; Alegakis AK; Vasilaki F; Kaloudis K; Tsiaoussis J; Kouretas D; Tsitsimpikou C; Carvalho F; Tsatsakis AM
    Mutat Res Genet Toxicol Environ Mutagen; 2018; 829-830():26-32. PubMed ID: 29704990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymes and inhibitors in neonicotinoid insecticide metabolism.
    Shi X; Dick RA; Ford KA; Casida JE
    J Agric Food Chem; 2009 Jun; 57(11):4861-6. PubMed ID: 19391582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advances in the study of aldehyde oxidases].
    Mi JQ; Li Y
    Yao Xue Xue Bao; 2014 May; 49(5):582-9. PubMed ID: 25151725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel ring oxidation of 4- or 5-substituted 2H-oxazole to corresponding 2-oxazolone catalyzed by cytosolic aldehyde oxidase.
    Arora VK; Philip T; Huang S; Shu YZ
    Drug Metab Dispos; 2012 Sep; 40(9):1668-76. PubMed ID: 22621803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The two faces of aldehyde oxidase: Oxidative and reductive transformations of 5-nitroquinoline.
    Paragas EM; Humphreys SC; Min J; Joswig-Jones CA; Jones JP
    Biochem Pharmacol; 2017 Dec; 145():210-217. PubMed ID: 28888950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neo-nicotinoid metabolic activation and inactivation established with coupled nicotinic receptor-CYP3A4 and -aldehyde oxidase systems.
    Honda H; Tomizawa M; Casida JE
    Toxicol Lett; 2006 Feb; 161(2):108-14. PubMed ID: 16153789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti.
    Riaz MA; Chandor-Proust A; Dauphin-Villemant C; Poupardin R; Jones CM; Strode C; Régent-Kloeckner M; David JP; Reynaud S
    Aquat Toxicol; 2013 Jan; 126():326-37. PubMed ID: 23058251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial hydroxylation of imidacloprid for the synthesis of highly insecticidal olefin imidacloprid.
    Dai YJ; Yuan S; Ge F; Chen T; Xu SC; Ni JP
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):927-34. PubMed ID: 16307271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance.
    Casida JE
    J Agric Food Chem; 2011 Apr; 59(7):2923-31. PubMed ID: 20731358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partitioning the roles of CYP6G1 and gut microbes in the metabolism of the insecticide imidacloprid in Drosophila melanogaster.
    Fusetto R; Denecke S; Perry T; O'Hair RAJ; Batterham P
    Sci Rep; 2017 Sep; 7(1):11339. PubMed ID: 28900131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G.
    Pandey G; Dorrian SJ; Russell RJ; Oakeshott JG
    Biochem Biophys Res Commun; 2009 Mar; 380(3):710-4. PubMed ID: 19285027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice.
    Beland FA
    Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The participation of human hepatic P450 isoforms, flavin-containing monooxygenases and aldehyde oxidase in the biotransformation of the insecticide fenthion.
    Leoni C; Buratti FM; Testai E
    Toxicol Appl Pharmacol; 2008 Dec; 233(2):343-52. PubMed ID: 18845175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance.
    Joussen N; Heckel DG; Haas M; Schuphan I; Schmidt B
    Pest Manag Sci; 2008 Jan; 64(1):65-73. PubMed ID: 17912692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.