These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23462533)

  • 1. Trajectory data analyses for pedestrian space-time activity study.
    Qi F; Du F
    J Vis Exp; 2013 Feb; (72):e50130. PubMed ID: 23462533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking and visualization of space-time activities for a micro-scale flu transmission study.
    Qi F; Du F
    Int J Health Geogr; 2013 Feb; 12():6. PubMed ID: 23388060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated time activity classification based on global positioning system (GPS) tracking data.
    Wu J; Jiang C; Houston D; Baker D; Delfino R
    Environ Health; 2011 Nov; 10():101. PubMed ID: 22082316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of human outdoor walking with a low-cost GPS and simple spreadsheet analysis.
    Le Faucheur A; Abraham P; Jaquinandi V; Bouyé P; Saumet JL; Noury-Desvaux B
    Med Sci Sports Exerc; 2007 Sep; 39(9):1570-8. PubMed ID: 17805090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Innovative Context-Based Crystal-Growth Activity Space Method for Environmental Exposure Assessment: A Study Using GIS and GPS Trajectory Data Collected in Chicago.
    Wang J; Kwan MP; Chai Y
    Int J Environ Res Public Health; 2018 Apr; 15(4):. PubMed ID: 29642530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for space, time, and behavior using GPS derived dynamic measures of environmental exposure.
    Jankowska MM; Yang JA; Luo N; Spoon C; Benmarhnia T
    Health Place; 2023 Jan; 79():102706. PubMed ID: 34801405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing patterns of spatial behavior in health studies: their socio-demographic determinants and associations with transportation modes (the RECORD Cohort Study).
    Perchoux C; Kestens Y; Thomas F; Van Hulst A; Thierry B; Chaix B
    Soc Sci Med; 2014 Oct; 119():64-73. PubMed ID: 25150652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of travel-related urban zones, cycling and pedestrian networks and green space to commuting physical activity among adults - a cross-sectional population-based study using geographical information systems.
    Mäki-Opas TE; Borodulin K; Valkeinen H; Stenholm S; Kunst AE; Abel T; Härkänen T; Kopperoinen L; Itkonen P; Prättälä R; Karvonen S; Koskinen S
    BMC Public Health; 2016 Aug; 16(1):760. PubMed ID: 27516181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tool for exploring space-time patterns: an animation user research.
    Ogao PJ
    Int J Health Geogr; 2006 Aug; 5():35. PubMed ID: 16938138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature-First Add-On for Trajectory Simplification in Lifelog Applications.
    Kim J
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refining Time-Activity Classification of Human Subjects Using the Global Positioning System.
    Hu M; Li W; Li L; Houston D; Wu J
    PLoS One; 2016; 11(2):e0148875. PubMed ID: 26919723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of GPS data loggers to describe the impact of spatio-temporal movement patterns on malaria control in a high-transmission area of northern Zambia.
    Hast M; Searle KM; Chaponda M; Lupiya J; Lubinda J; Sikalima J; Kobayashi T; Shields T; Mulenga M; Lessler J; Moss WJ;
    Int J Health Geogr; 2019 Aug; 18(1):19. PubMed ID: 31426819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying indoor and outdoor modeling techniques to estimate individual exposure to PM2.5 from personal GPS profiles and diaries: a pilot study.
    Gerharz LE; Krüger A; Klemm O
    Sci Total Environ; 2009 Sep; 407(18):5184-93. PubMed ID: 19577794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining sensor tracking with a GPS-based mobility survey to better measure physical activity in trips: public transport generates walking.
    Chaix B; Benmarhnia T; Kestens Y; Brondeel R; Perchoux C; Gerber P; Duncan DT
    Int J Behav Nutr Phys Act; 2019 Oct; 16(1):84. PubMed ID: 31590666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a comprehensive set of GPS-based indicators reflecting the multidimensional nature of daily mobility for applications in health and aging research.
    Fillekes MP; Giannouli E; Kim EK; Zijlstra W; Weibel R
    Int J Health Geogr; 2019 Jul; 18(1):17. PubMed ID: 31340812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indoor Trajectory Reconstruction of Walking, Jogging, and Running Activities Based on a Foot-Mounted Inertial Pedestrian Dead-Reckoning System.
    Ceron JD; Martindale CF; López DM; Kluge F; Eskofier BM
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991597
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.