BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23462641)

  • 61. Charge Distribution Fine-Tunes the Translocation of α-Helical Amphipathic Peptides across Membranes.
    Ablan FDO; Spaller BL; Abdo KI; Almeida PF
    Biophys J; 2016 Oct; 111(8):1738-1749. PubMed ID: 27760360
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans.
    Ziegler A
    Adv Drug Deliv Rev; 2008 Mar; 60(4-5):580-97. PubMed ID: 18045730
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.
    Takechi-Haraya Y; Saito H
    Curr Protein Pept Sci; 2018; 19(6):623-630. PubMed ID: 29332576
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cell penetrating peptide modulation of membrane biomechanics by Molecular dynamics.
    Grasso G; Muscat S; Rebella M; Morbiducci U; Audenino A; Danani A; Deriu MA
    J Biomech; 2018 May; 73():137-144. PubMed ID: 29631749
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Translocation mechanism(s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers.
    Di Pisa M; Chassaing G; Swiecicki JM
    Biochemistry; 2015 Jan; 54(2):194-207. PubMed ID: 25490050
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues.
    Song YM; Park Y; Lim SS; Yang ST; Woo ER; Park IS; Lee JS; Kim JI; Hahm KS; Kim Y; Shin SY
    Biochemistry; 2005 Sep; 44(36):12094-106. PubMed ID: 16142907
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Thermodynamics of lipid interactions with cell-penetrating peptides.
    Sauder R; Seelig J; Ziegler A
    Methods Mol Biol; 2011; 683():129-55. PubMed ID: 21053127
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
    Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG
    Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanisms of antibacterial action of three monoterpenes.
    Trombetta D; Castelli F; Sarpietro MG; Venuti V; Cristani M; Daniele C; Saija A; Mazzanti G; Bisignano G
    Antimicrob Agents Chemother; 2005 Jun; 49(6):2474-8. PubMed ID: 15917549
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction.
    Hedegaard SF; Derbas MS; Lind TK; Kasimova MR; Christensen MV; Michaelsen MH; Campbell RA; Jorgensen L; Franzyk H; Cárdenas M; Nielsen HM
    Sci Rep; 2018 Apr; 8(1):6327. PubMed ID: 29679078
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Shifting gear in antimicrobial and anticancer peptides biophysical studies: from vesicles to cells.
    Freire JM; Gaspar D; Veiga AS; Castanho MA
    J Pept Sci; 2015 Mar; 21(3):178-85. PubMed ID: 25645747
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Classes of Cell-Penetrating Peptides.
    Pooga M; Langel Ü
    Methods Mol Biol; 2015; 1324():3-28. PubMed ID: 26202259
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dynamic measurements of membrane insertion potential of synthetic cell penetrating peptides.
    Alhakamy NA; Kaviratna A; Berkland CJ; Dhar P
    Langmuir; 2013 Dec; 29(49):15336-49. PubMed ID: 24294979
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides.
    Zakany F; Mándity IM; Varga Z; Panyi G; Nagy P; Kovacs T
    Cells; 2023 Jun; 12(13):. PubMed ID: 37443733
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High Selective Performance of Designed Antibacterial and Anticancer Peptide Amphiphiles.
    Chen C; Chen Y; Yang C; Zeng P; Xu H; Pan F; Lu JR
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17346-55. PubMed ID: 26204061
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bacterial species selective toxicity of two isomeric alpha/beta-peptides: role of membrane lipids.
    Epand RF; Schmitt MA; Gellman SH; Sen A; Auger M; Hughes DW; Epand RM
    Mol Membr Biol; 2005; 22(6):457-69. PubMed ID: 16373318
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action.
    Freire JM; Veiga AS; Rego de Figueiredo I; de la Torre BG; Santos NC; Andreu D; Da Poian AT; Castanho MA
    FEBS J; 2014 Jan; 281(1):191-215. PubMed ID: 24286593
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Simple model of the transduction of cell-penetrating peptides.
    Cahill K
    IET Syst Biol; 2009 Sep; 3(5):300-6. PubMed ID: 21028921
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Improving the biological activity of the antimicrobial peptide anoplin by membrane anchoring through a lipophilic amino acid derivative.
    Slootweg JC; van Schaik TB; Quarles van Ufford HL; Breukink E; Liskamp RM; Rijkers DT
    Bioorg Med Chem Lett; 2013 Jul; 23(13):3749-52. PubMed ID: 23719232
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The antimicrobial domains of wheat puroindolines are cell-penetrating peptides with possible intracellular mechanisms of action.
    Alfred RL; Palombo EA; Panozzo JF; Bhave M
    PLoS One; 2013; 8(10):e75488. PubMed ID: 24098387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.