BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23462641)

  • 81. Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity.
    dos Santos Cabrera MP; Arcisio-Miranda M; Gorjão R; Leite NB; de Souza BM; Curi R; Procopio J; Ruggiero Neto J; Palma MS
    Biochemistry; 2012 Jun; 51(24):4898-908. PubMed ID: 22630563
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Secondary structure of cell-penetrating peptides during interaction with fungal cells.
    Gong Z; Ikonomova SP; Karlsson AJ
    Protein Sci; 2018 Mar; 27(3):702-713. PubMed ID: 29247564
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Enhanced Cationic Charge is a Key Factor in Promoting Staphylocidal Activity of α-Melanocyte Stimulating Hormone via Selective Lipid Affinity.
    Singh J; Joshi S; Mumtaz S; Maurya N; Ghosh I; Khanna S; Natarajan VT; Mukhopadhyay K
    Sci Rep; 2016 Aug; 6():31492. PubMed ID: 27526963
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from (13)C, (31)P, and (19)F solid-state NMR.
    Su Y; Doherty T; Waring AJ; Ruchala P; Hong M
    Biochemistry; 2009 Jun; 48(21):4587-95. PubMed ID: 19364134
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding.
    Ramírez PG; Del Pópolo MG; Vila JA; Longo GS
    Phys Chem Chem Phys; 2020 Oct; 22(40):23399-23410. PubMed ID: 33048078
    [TBL] [Abstract][Full Text] [Related]  

  • 86. How Does Membrane Oxidation Affect Cell Delivery and Cell Killing?
    Libardo MDJ; Wang TY; Pellois JP; Angeles-Boza AM
    Trends Biotechnol; 2017 Aug; 35(8):686-690. PubMed ID: 28460718
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Tryptophan-containing lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria.
    Grau-Campistany A; Manresa Á; Pujol M; Rabanal F; Cajal Y
    Biochim Biophys Acta; 2016 Feb; 1858(2):333-43. PubMed ID: 26607008
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Membrane affinity and fluorescent labelling: comparative study of monolayer interaction, cellular uptake and cytotoxicity profile of carboxyfluorescein-conjugated cationic peptides.
    Kiss É; Gyulai G; Pári E; Horváti K; Bősze S
    Amino Acids; 2018 Nov; 50(11):1557-1571. PubMed ID: 30099595
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A pH-dependent charge reversal peptide for cancer targeting.
    Wakabayashi N; Yano Y; Kawano K; Matsuzaki K
    Eur Biophys J; 2017 Mar; 46(2):121-127. PubMed ID: 27278924
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides.
    Khemaissa S; Walrant A; Sagan S
    Q Rev Biophys; 2022 Aug; 55():e10. PubMed ID: 35979810
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Role of anionic phospholipids in the interaction of doxorubicin and plasma membrane vesicles: drug binding and structural consequences in bacterial systems.
    de Wolf FA; Staffhorst RW; Smits HP; Onwezen MF; de Kruijff B
    Biochemistry; 1993 Jul; 32(26):6688-95. PubMed ID: 8329395
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Cell-penetrating peptide exploited syndecans.
    Letoha T; Keller-Pintér A; Kusz E; Kolozsi C; Bozsó Z; Tóth G; Vizler C; Oláh Z; Szilák L
    Biochim Biophys Acta; 2010 Dec; 1798(12):2258-65. PubMed ID: 20138023
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Membrane-active peptides and the clustering of anionic lipids.
    Wadhwani P; Epand RF; Heidenreich N; Bürck J; Ulrich AS; Epand RM
    Biophys J; 2012 Jul; 103(2):265-74. PubMed ID: 22853904
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Penetratin story: an overview.
    Dupont E; Prochiantz A; Joliot A
    Methods Mol Biol; 2011; 683():21-9. PubMed ID: 21053119
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Chemical-functional diversity in cell-penetrating peptides.
    Stalmans S; Wynendaele E; Bracke N; Gevaert B; D'Hondt M; Peremans K; Burvenich C; De Spiegeleer B
    PLoS One; 2013; 8(8):e71752. PubMed ID: 23951237
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR.
    Su Y; Li S; Hong M
    Amino Acids; 2013 Mar; 44(3):821-33. PubMed ID: 23108593
    [TBL] [Abstract][Full Text] [Related]  

  • 97. pVEC hydrophobic N-terminus is critical for antibacterial activity.
    Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E
    J Pept Sci; 2018 Jun; 24(6):e3083. PubMed ID: 29737576
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents.
    Borrelli A; Tornesello AL; Tornesello ML; Buonaguro FM
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29385037
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Critical Evaluation and Compilation of Physicochemical Determinants and Membrane Interactions of MMGP1 Antifungal Peptide.
    Pushpanathan M; Pooja S; Gunasekaran P; Rajendhran J
    Mol Pharm; 2016 May; 13(5):1656-67. PubMed ID: 26987762
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Characterization of a Cell-Penetrating Peptide with Potential Anticancer Activity.
    Gronewold A; Horn M; Ranđelović I; Tóvári J; Muñoz Vázquez S; Schomäcker K; Neundorf I
    ChemMedChem; 2017 Jan; 12(1):42-49. PubMed ID: 27860402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.