BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23463011)

  • 1. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells.
    Lee JG; Baek K; Soetandyo N; Ye Y
    Nat Commun; 2013; 4():1568. PubMed ID: 23463011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deubiquitinases as a signaling target of oxidative stress.
    Cotto-Rios XM; Békés M; Chapman J; Ueberheide B; Huang TT
    Cell Rep; 2012 Dec; 2(6):1475-84. PubMed ID: 23219552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of A20 and other OTU deubiquitinases by reversible oxidation.
    Kulathu Y; Garcia FJ; Mevissen TE; Busch M; Arnaudo N; Carroll KS; Barford D; Komander D
    Nat Commun; 2013; 4():1569. PubMed ID: 23463012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-over Loop Cysteine C152 Acts as an Antioxidant to Maintain the Folding Stability and Deubiquitinase Activity of UCH-L1 Under Oxidative Stress.
    Puri S; Hsu SD
    J Mol Biol; 2021 Apr; 433(8):166879. PubMed ID: 33617897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemistry: Oxidation controls the DUB step.
    Clague MJ
    Nature; 2013 May; 497(7447):49-50. PubMed ID: 23636394
    [No Abstract]   [Full Text] [Related]  

  • 7. Dual regulation of heat-shock transcription factor (HSF) activation and DNA-binding activity by H2O2: role of thioredoxin.
    Jacquier-Sarlin MR; Polla BS
    Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):187-93. PubMed ID: 8761470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible oxidation controls the activity and oligomeric state of the mammalian phosphoglycolate phosphatase AUM.
    Seifried A; Bergeron A; Boivin B; Gohla A
    Free Radic Biol Med; 2016 Aug; 97():75-84. PubMed ID: 27179418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxide-mediated oxidation and inhibition of the peptidyl-prolyl isomerase Pin1.
    Innes BT; Sowole MA; Gyenis L; Dubinsky M; Konermann L; Litchfield DW; Brandl CJ; Shilton BH
    Biochim Biophys Acta; 2015 May; 1852(5):905-12. PubMed ID: 25595659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the oxidation susceptibility of deubiquitinases for inhibition with small molecules.
    Ohayon S; Refua M; Hendler A; Aharoni A; Brik A
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):599-603. PubMed ID: 25327786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox regulation of the human xenobiotic metabolizing enzyme arylamine N-acetyltransferase 1 (NAT1). Reversible inactivation by hydrogen peroxide.
    Atmane N; Dairou J; Paul A; Dupret JM; Rodrigues-Lima F
    J Biol Chem; 2003 Sep; 278(37):35086-92. PubMed ID: 12832400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Oxygen Species-Mediated Cezanne Inactivation by Oxidation of its Catalytic Cysteine Residue in Hepatocellular Carcinoma.
    Yin Z; Yang L; Wu F; Fan J; Xu J; Jin Y; Yang G
    Oncol Res; 2019 Sep; 27(9):1069-1077. PubMed ID: 31072419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deubiquitinase Usp18 prevents cellular apoptosis from oxidative stress in liver cells.
    Lai KP; Cheung AHY; Tse WKF
    Cell Biol Int; 2017 Aug; 41(8):914-921. PubMed ID: 28557172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a redox-sensitive switch within the JAK2 catalytic domain.
    Smith JK; Patil CN; Patlolla S; Gunter BW; Booz GW; Duhé RJ
    Free Radic Biol Med; 2012 Mar; 52(6):1101-10. PubMed ID: 22281400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide.
    Yan LJ; Sumien N; Thangthaeng N; Forster MJ
    Free Radic Res; 2013 Feb; 47(2):123-33. PubMed ID: 23205777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible monoubiquitination of PCNA: A novel slant on regulating translesion DNA synthesis.
    Friedberg EC
    Mol Cell; 2006 Apr; 22(2):150-2. PubMed ID: 16630883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protease activity of human ATG4B is regulated by reversible oxidative modification.
    Zheng X; Yang Z; Gu Q; Xia F; Fu Y; Liu P; Yin XM; Li M
    Autophagy; 2020 Oct; 16(10):1838-1850. PubMed ID: 31880198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H
    Nelson KJ; Bolduc JA; Wu H; Collins JA; Burke EA; Reisz JA; Klomsiri C; Wood ST; Yammani RR; Poole LB; Furdui CM; Loeser RF
    J Biol Chem; 2018 Oct; 293(42):16376-16389. PubMed ID: 30190325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox regulation of fertilisation and the spermatogenic process.
    Fujii J; Tsunoda S
    Asian J Androl; 2011 May; 13(3):420-3. PubMed ID: 21460861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis.
    Nagahara N; Katayama A
    J Biol Chem; 2005 Oct; 280(41):34569-76. PubMed ID: 16107337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.