BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 23463012)

  • 21. LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes.
    Draber P; Kupka S; Reichert M; Draberova H; Lafont E; de Miguel D; Spilgies L; Surinova S; Taraborrelli L; Hartwig T; Rieser E; Martino L; Rittinger K; Walczak H
    Cell Rep; 2015 Dec; 13(10):2258-72. PubMed ID: 26670046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peroxide-mediated oxidation and inhibition of the peptidyl-prolyl isomerase Pin1.
    Innes BT; Sowole MA; Gyenis L; Dubinsky M; Konermann L; Litchfield DW; Brandl CJ; Shilton BH
    Biochim Biophys Acta; 2015 May; 1852(5):905-12. PubMed ID: 25595659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of NF-κB signaling by the A20 deubiquitinase.
    Shembade N; Harhaj EW
    Cell Mol Immunol; 2012 Mar; 9(2):123-30. PubMed ID: 22343828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme.
    Lu TT; Onizawa M; Hammer GE; Turer EE; Yin Q; Damko E; Agelidis A; Shifrin N; Advincula R; Barrera J; Malynn BA; Wu H; Ma A
    Immunity; 2013 May; 38(5):896-905. PubMed ID: 23602765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1.
    Manolaridis I; Kulkarni K; Dodd RB; Ogasawara S; Zhang Z; Bineva G; Reilly NO; Hanrahan SJ; Thompson AJ; Cronin N; Iwata S; Barford D
    Nature; 2013 Dec; 504(7479):301-5. PubMed ID: 24291792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct, noncatalytic mechanism of IKK inhibition by A20.
    Skaug B; Chen J; Du F; He J; Ma A; Chen ZJ
    Mol Cell; 2011 Nov; 44(4):559-71. PubMed ID: 22099304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling.
    Enesa K; Zakkar M; Chaudhury H; Luong le A; Rawlinson L; Mason JC; Haskard DO; Dean JL; Evans PC
    J Biol Chem; 2008 Mar; 283(11):7036-45. PubMed ID: 18178551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains.
    Düwel M; Welteke V; Oeckinghaus A; Baens M; Kloo B; Ferch U; Darnay BG; Ruland J; Marynen P; Krappmann D
    J Immunol; 2009 Jun; 182(12):7718-28. PubMed ID: 19494296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IkappaB kinase beta phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-kappaB pathway.
    Hutti JE; Turk BE; Asara JM; Ma A; Cantley LC; Abbott DW
    Mol Cell Biol; 2007 Nov; 27(21):7451-61. PubMed ID: 17709380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Eimeria acervulina OTU protease exhibits linkage-specific deubiquitinase activity.
    Wang P; Gong P; Wang W; Li J; Ai Y; Zhang X
    Parasitol Res; 2019 Jan; 118(1):47-55. PubMed ID: 30415394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deubiquitinases in the regulation of NF-κB signaling.
    Harhaj EW; Dixit VM
    Cell Res; 2011 Jan; 21(1):22-39. PubMed ID: 21119682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A critical evaluation of probes for cysteine sulfenic acid.
    Pople JMM; Chalker JM
    Curr Opin Chem Biol; 2021 Feb; 60():55-65. PubMed ID: 32866852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel type of deubiquitinating enzyme.
    Evans PC; Smith TS; Lai MJ; Williams MG; Burke DF; Heyninck K; Kreike MM; Beyaert R; Blundell TL; Kilshaw PJ
    J Biol Chem; 2003 Jun; 278(25):23180-6. PubMed ID: 12682062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant deubiquitinases: from structure and activity to biological functions.
    Luo R; Yang K; Xiao W
    Plant Cell Rep; 2023 Mar; 42(3):469-486. PubMed ID: 36567335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural insights into ubiquitin chain cleavage by
    Kang S; Kim G; Choi M; Jeong M; van der Heden van Noort GJ; Roh SH; Shin D
    Life Sci Alliance; 2023 Jul; 6(7):. PubMed ID: 37100438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A20: from ubiquitin editing to tumour suppression.
    Hymowitz SG; Wertz IE
    Nat Rev Cancer; 2010 May; 10(5):332-41. PubMed ID: 20383180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical basis of sulphenomics: how protein sulphenic acids may be stabilized by the protein microenvironment.
    Trost P; Fermani S; Calvaresi M; Zaffagnini M
    Plant Cell Environ; 2017 Apr; 40(4):483-490. PubMed ID: 27390911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emergence of the A20/ABIN-mediated inhibition of NF-κB signaling via modifying the ubiquitinated proteins in a basal chordate.
    Yuan S; Dong X; Tao X; Xu L; Ruan J; Peng J; Xu A
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6720-5. PubMed ID: 24753567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7.
    Ning S; Pagano JS
    J Virol; 2010 Jun; 84(12):6130-8. PubMed ID: 20392859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.