These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 23463031)
1. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. Du P; Lu J; Lau KC; Luo X; Bareño J; Zhang X; Ren Y; Zhang Z; Curtiss LA; Sun YK; Amine K Phys Chem Chem Phys; 2013 Apr; 15(15):5572-81. PubMed ID: 23463031 [TBL] [Abstract][Full Text] [Related]
2. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries. Dedryvère R; Leroy S; Martinez H; Blanchard F; Lemordant D; Gonbeau D J Phys Chem B; 2006 Jul; 110(26):12986-92. PubMed ID: 16805604 [TBL] [Abstract][Full Text] [Related]
3. Molecular-level insights into the reactivity of siloxane-based electrolytes at a lithium-metal anode. Assary RS; Lu J; Luo X; Zhang X; Ren Y; Wu H; Albishri HM; El-Hady DA; Al-Bogami AS; Curtiss LA; Amine K Chemphyschem; 2014 Jul; 15(10):2077-83. PubMed ID: 24986260 [TBL] [Abstract][Full Text] [Related]
4. Elucidation and Comparison of the Effect of LiTFSI and LiNO Iliksu M; Khetan A; Yang S; Simon U; Pitsch H; Sauer DU ACS Appl Mater Interfaces; 2017 Jun; 9(22):19319-19325. PubMed ID: 28485949 [TBL] [Abstract][Full Text] [Related]
5. Dominant Decomposition Pathways for Ethereal Solvents in Li-O2 Batteries. García JM; Horn HW; Rice JE J Phys Chem Lett; 2015 May; 6(10):1795-9. PubMed ID: 26263250 [TBL] [Abstract][Full Text] [Related]
6. Surface Study of Lithium-Air Battery Oxygen Cathodes in Different Solvent-Electrolyte pairs. Marchini F; Herrera S; Torres W; Tesio AY; Williams FJ; Calvo EJ Langmuir; 2015 Aug; 31(33):9236-45. PubMed ID: 26222833 [TBL] [Abstract][Full Text] [Related]
7. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Bieker G; Winter M; Bieker P Phys Chem Chem Phys; 2015 Apr; 17(14):8670-9. PubMed ID: 25735488 [TBL] [Abstract][Full Text] [Related]
9. Sacrificial Co-solvent Electrolyte to Construct a Stable Solid Electrolyte Interphase in Lithium-Oxygen Batteries. Zhang YN; Jiang FL; Bai F; Jiang H; Zhang T ACS Appl Mater Interfaces; 2022 Mar; 14(8):10327-10336. PubMed ID: 35175720 [TBL] [Abstract][Full Text] [Related]
10. Catalyst and electrolyte synergy in Li-O2 batteries. Gittleson FS; Sekol RC; Doubek G; Linardi M; Taylor AD Phys Chem Chem Phys; 2014 Feb; 16(7):3230-7. PubMed ID: 24406938 [TBL] [Abstract][Full Text] [Related]
11. Robust cycling of Li-O2 batteries through the synergistic effect of blended electrolytes. Kim BG; Lee JN; Lee DJ; Park JK; Choi JW ChemSusChem; 2013 Mar; 6(3):443-8. PubMed ID: 23371842 [TBL] [Abstract][Full Text] [Related]
12. Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries. Li X; Zheng J; Engelhard MH; Mei D; Li Q; Jiao S; Liu N; Zhao W; Zhang JG; Xu W ACS Appl Mater Interfaces; 2018 Jan; 10(3):2469-2479. PubMed ID: 29281242 [TBL] [Abstract][Full Text] [Related]
13. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. Wen R; Hong M; Byon HR J Am Chem Soc; 2013 Jul; 135(29):10870-6. PubMed ID: 23808397 [TBL] [Abstract][Full Text] [Related]
14. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation. Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455 [TBL] [Abstract][Full Text] [Related]
15. Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes. Wu F; Zhou H; Bai Y; Wang H; Wu C ACS Appl Mater Interfaces; 2015 Jul; 7(27):15098-107. PubMed ID: 26087246 [TBL] [Abstract][Full Text] [Related]
16. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567 [TBL] [Abstract][Full Text] [Related]
17. Investigation on the Cyclability of Lithium-Oxygen Cells in a Confined Potential Window using Cathodes with Pre-filled Discharge Products. Geng D; Ding N; Hor TS; Chien SW; Liu Z; Zong Y Chem Asian J; 2015 Oct; 10(10):2182-9. PubMed ID: 26011604 [TBL] [Abstract][Full Text] [Related]
19. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. Lim HK; Lim HD; Park KY; Seo DH; Gwon H; Hong J; Goddard WA; Kim H; Kang K J Am Chem Soc; 2013 Jul; 135(26):9733-42. PubMed ID: 23758262 [TBL] [Abstract][Full Text] [Related]
20. A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide. Laino T; Curioni A Chemistry; 2012 Mar; 18(12):3510-20. PubMed ID: 22354790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]