These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 23463190)

  • 21. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules.
    Wang C; Nam SW; Cotte JM; Jahnes CV; Colgan EG; Bruce RL; Brink M; Lofaro MF; Patel JV; Gignac LM; Joseph EA; Rao SP; Stolovitzky G; Polonsky S; Lin Q
    Nat Commun; 2017 Jan; 8():14243. PubMed ID: 28112157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optic imaging of single and two-phase pressure-driven flows in nano-scale channels.
    Wu Q; Ok JT; Sun Y; Retterer ST; Neeves KB; Yin X; Bai B; Ma Y
    Lab Chip; 2013 Mar; 13(6):1165-71. PubMed ID: 23370894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses.
    Zhang Q; Lin H; Jia B; Xu L; Gu M
    Opt Express; 2010 Mar; 18(7):6885-90. PubMed ID: 20389708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid glass electrodes for nanofluidics.
    Lee S; An R; Hunt AJ
    Nat Nanotechnol; 2010 Jun; 5(6):412-6. PubMed ID: 20473300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass.
    Corbari C; Champion A; Gecevičius M; Beresna M; Bellouard Y; Kazansky PG
    Opt Express; 2013 Feb; 21(4):3946-58. PubMed ID: 23481930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optically fabricated three dimensional nanofluidic mixers for microfluidic devices.
    Jeon S; Malyarchuk V; White JO; Rogers JA
    Nano Lett; 2005 Jul; 5(7):1351-6. PubMed ID: 16178237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A touch-and-go lipid wrapping technique in microfluidic channels for rapid fabrication of multifunctional envelope-type gene delivery nanodevices.
    Kitazoe K; Wang J; Kaji N; Okamoto Y; Tokeshi M; Kogure K; Harashima H; Baba Y
    Lab Chip; 2011 Oct; 11(19):3256-62. PubMed ID: 21829858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide.
    Oh YJ; Gamble TC; Leonhardt D; Chung CH; Brueck SR; Ivory CF; Lopez GP; Petsev DN; Han SM
    Lab Chip; 2008 Feb; 8(2):251-8. PubMed ID: 18231663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new method of UV-patternable hydrophobization of micro- and nanofluidic networks.
    Arayanarakool R; Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2011 Dec; 11(24):4260-6. PubMed ID: 22064947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Device for rapid and agile measurement of diffusivity in micro- and nanochannels.
    Grattoni A; Gill J; Zabre E; Fine D; Hussain F; Ferrari M
    Anal Chem; 2011 Apr; 83(8):3096-103. PubMed ID: 21434670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diffusion-limited patterning of molecules in nanofluidic channels.
    Karnik R; Castelino K; Duan C; Majumdar A
    Nano Lett; 2006 Aug; 6(8):1735-40. PubMed ID: 16895365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures.
    Xu Y; Wu Q; Shimatani Y; Yamaguchi K
    Lab Chip; 2015 Oct; 15(19):3856-61. PubMed ID: 26278885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding.
    Abgrall P; Low LN; Nguyen NT
    Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Femtoliter droplet handling in nanofluidic channels: a Laplace nanovalve.
    Mawatari K; Kubota S; Xu Y; Priest C; Sedev R; Ralston J; Kitamori T
    Anal Chem; 2012 Dec; 84(24):10812-6. PubMed ID: 23214507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery.
    Fine D; Grattoni A; Hosali S; Ziemys A; De Rosa E; Gill J; Medema R; Hudson L; Kojic M; Milosevic M; Brousseau Iii L; Goodall R; Ferrari M; Liu X
    Lab Chip; 2010 Nov; 10(22):3074-83. PubMed ID: 20697650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.
    Gong M; Bohn PW; Sweedler JV
    Anal Chem; 2009 Mar; 81(5):2022-6. PubMed ID: 19182940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond laser-induced microstructures in glasses and applications in micro-optics.
    Qiu J
    Chem Rec; 2004; 4(1):50-8. PubMed ID: 15057868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ investigation of the shrinkage of photopolymerized micro/nanostructures: the effect of the drying process.
    Sun Q; Ueno K; Misawa H
    Opt Lett; 2012 Feb; 37(4):710-2. PubMed ID: 22344156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.