These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 23463363)

  • 21. A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons.
    Qi Z; Zhao F; Zhou X; Sun Z; Park HS; Wu H
    Nanotechnology; 2010 Jul; 21(26):265702. PubMed ID: 20522927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unzipping carbon nanotubes into nanoribbons upon oxidation: a first-principles study.
    Li F; Kan E; Lu R; Xiao C; Deng K; Su H
    Nanoscale; 2012 Feb; 4(4):1254-7. PubMed ID: 22252198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations.
    Du A; Chen Y; Zhu Z; Lu G; Smith SC
    J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetism in Nonplanar Zigzag Edge Termini of Graphene Nanoribbons.
    Xu X; Sun K; Ishikawa A; Narita A; Kawai S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202302534. PubMed ID: 36929312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic structure and transport properties of N2(AA)-doped armchair and zigzag graphene nanoribbons.
    Owens JR; Cruz-Silva E; Meunier V
    Nanotechnology; 2013 Jun; 24(23):235701. PubMed ID: 23669134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2010 Mar; 12(10):2313-20. PubMed ID: 20449344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical manipulations on electronic transport of graphene nanoribbons.
    Wang J; Zhang G; Ye F; Wang X
    J Phys Condens Matter; 2015 Jun; 27(22):225305. PubMed ID: 25985040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic and magnetic properties of H-terminated graphene nanoribbons deposited on the topological insulator Sb2Te3.
    Zhang W; Hajiheidari F; Li Y; Mazzarello R
    Sci Rep; 2016 Jul; 6():29009. PubMed ID: 27405058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Configuration-dependent electronic and magnetic properties of graphene monolayers and nanoribbons functionalized with aryl groups.
    Tian X; Gu J; Xu JB
    J Chem Phys; 2014 Jan; 140(4):044712. PubMed ID: 25669572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic structure changes during the surface-assisted formation of a graphene nanoribbon.
    Bronner C; Utecht M; Haase A; Saalfrank P; Klamroth T; Tegeder P
    J Chem Phys; 2014 Jan; 140(2):024701. PubMed ID: 24437896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Edge-decorated graphene nanoribbons by scandium as hydrogen storage media.
    Wu M; Gao Y; Zhang Z; Zeng XC
    Nanoscale; 2012 Feb; 4(3):915-20. PubMed ID: 22218647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the Magnetism of Topological End States in 5-Armchair Graphene Nanoribbons.
    Lawrence J; Brandimarte P; Berdonces-Layunta A; Mohammed MSG; Grewal A; Leon CC; Sánchez-Portal D; de Oteyza DG
    ACS Nano; 2020 Apr; 14(4):4499-4508. PubMed ID: 32101402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stacking stability, emergence of magnetization and electromechanical nanosensing in bilayer graphene nanoribbons.
    Paulla KK; Farajian AA
    J Phys Condens Matter; 2013 Mar; 25(11):115303. PubMed ID: 23406963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of layer stacking on the electronic structure of graphene nanoribbons.
    Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK
    ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable growth of one-dimensional graphitic materials: graphene nanoribbons, carbon nanotubes, and nanoribbon/nanotube junctions.
    Lou S; Lyu B; Chen J; Qiu L; Ma S; Shen P; Zhang Z; Xie Y; Liang Q; Watanabe K; Taniguchi T; Ding F; Shi Z
    Sci Rep; 2023 Mar; 13(1):4328. PubMed ID: 36922649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the unzipping of multiwalled carbon nanotubes.
    dos Santos RP; Perim E; Autreto PA; Brunetto G; Galvão DS
    Nanotechnology; 2012 Nov; 23(46):465702. PubMed ID: 23093108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.