BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23463500)

  • 1. From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander.
    Bicanski A; Ryczko D; Cabelguen JM; Ijspeert AJ
    Biol Cybern; 2013 Oct; 107(5):565-87. PubMed ID: 23463500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organisation of the spinal central pattern generators for locomotion in the salamander: biology and modelling.
    Chevallier S; Jan Ijspeert A; Ryczko D; Nagy F; Cabelguen JM
    Brain Res Rev; 2008 Jan; 57(1):147-61. PubMed ID: 17920689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms.
    Ryczko D; Charrier V; Ijspeert A; Cabelguen JM
    J Neurophysiol; 2010 Nov; 104(5):2677-92. PubMed ID: 20810687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.II. Hemisegmental oscillations produced by mutually coupled excitatory neurons.
    Kotaleski JH; Lansner A; Grillner S
    Biol Cybern; 1999 Oct; 81(4):299-315. PubMed ID: 10541934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new model of the spinal locomotor networks of a salamander and its properties.
    Liu Q; Yang H; Zhang J; Wang J
    Biol Cybern; 2018 Aug; 112(4):369-385. PubMed ID: 29790009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator.
    Ullström M; Kotaleski JH; Tegnér J; Aurell E; Grillner S; Lansner A
    Biol Cybern; 1998 Jul; 79(1):1-14. PubMed ID: 9742673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics.
    Bicanski A; Ryczko D; Knuesel J; Harischandra N; Charrier V; Ekeberg Ö; Cabelguen JM; Ijspeert AJ
    Biol Cybern; 2013 Oct; 107(5):545-64. PubMed ID: 23430277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fictive rhythmic motor patterns produced by the tail spinal cord in salamanders.
    Charrier V; Cabelguen JM
    Neuroscience; 2013; 255():191-202. PubMed ID: 24161283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A salamander's flexible spinal network for locomotion, modeled at two levels of abstraction.
    Knüsel J; Bicanski A; Ryczko D; Cabelguen JM; Ijspeert AJ
    Integr Comp Biol; 2013 Aug; 53(2):269-82. PubMed ID: 23784700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From swimming to walking with a salamander robot driven by a spinal cord model.
    Ijspeert AJ; Crespi A; Ryczko D; Cabelguen JM
    Science; 2007 Mar; 315(5817):1416-20. PubMed ID: 17347441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhythmogenesis in axial locomotor networks: an interspecies comparison.
    Ryczko D; Dubuc R; Cabelguen JM
    Prog Brain Res; 2010; 187():189-211. PubMed ID: 21111209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey.
    Wallén P; Ekeberg O; Lansner A; Brodin L; Tråvén H; Grillner S
    J Neurophysiol; 1992 Dec; 68(6):1939-50. PubMed ID: 1283406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-voltage-activated calcium channels in the lamprey locomotor network: simulation and experiment.
    Tegnér J; Hellgren-Kotaleski J; Lansner A; Grillner S
    J Neurophysiol; 1997 Apr; 77(4):1795-812. PubMed ID: 9114237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spino-reticulo-spinal loop can slow down the NMDA-activated spinal locomotor network in lamprey.
    Vinay L; Grillner S
    Neuroreport; 1993 Jun; 4(6):609-12. PubMed ID: 8394151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.I. Segmental oscillations dependent on reciprocal inhibition.
    Kotaleski JH; Grillner S; Lansner A
    Biol Cybern; 1999 Oct; 81(4):317-30. PubMed ID: 10541935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexibility in the patterning and control of axial locomotor networks in lamprey.
    Buchanan JT
    Integr Comp Biol; 2011 Dec; 51(6):869-78. PubMed ID: 21743089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling.
    Hagevik A; McClellan AD
    J Neurophysiol; 1994 Oct; 72(4):1810-29. PubMed ID: 7823103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of ionic currents in lamprey CpG neurons: a modeling study.
    Huss M; Lansner A; Wallén P; El Manira A; Grillner S; Kotaleski JH
    J Neurophysiol; 2007 Apr; 97(4):2696-711. PubMed ID: 17287443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hemicord locomotor network of excitatory interneurons: a simulation study.
    Kozlov AK; Lansner A; Grillner S; Kotaleski JH
    Biol Cybern; 2007 Feb; 96(2):229-43. PubMed ID: 17180687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.