These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 23463718)

  • 1. Modeling diffusion in foamed polymer nanocomposites.
    Ippalapalli S; Ranaprathapan AD; Singh SN; Harikrishnan G
    Chemphyschem; 2013 Apr; 14(6):1190-6. PubMed ID: 23463718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical conductivity of synergistically hybridized nanocomposites based on graphite nanoplatelets and carbon nanotubes.
    Safdari M; Al-Haik M
    Nanotechnology; 2012 Oct; 23(40):405202. PubMed ID: 22990008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity and combustion properties of wheat gluten foams.
    Blomfeldt TO; Nilsson F; Holgate T; Xu J; Johansson E; Hedenqvist MS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1629-35. PubMed ID: 22332837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing nanodispersions of clays for reactive foaming.
    Harikrishnan G; Lindsay CI; Arunagirinathan MA; Macosko CW
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1913-8. PubMed ID: 20355814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyol-assisted vermiculite dispersion in polyurethane nanocomposites.
    Park YT; Qian Y; Lindsay CI; Nijs C; Camargo RE; Stein A; Macosko CW
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3054-62. PubMed ID: 23506456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XLPE based Al2O3-clay binary and ternary hybrid nanocomposites: self-assembly of nanoscale hybrid fillers, polymer chain confinement and transport characteristics.
    Jose JP; Thomas S
    Phys Chem Chem Phys; 2014 Oct; 16(37):20190-201. PubMed ID: 25139530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective improvement of water-retention in nanocomposite membranes using novel organo-modified clays as fillers for high temperature PEMFCs.
    Nicotera I; Enotiadis A; Angjeli K; Coppola L; Ranieri GA; Gournis D
    J Phys Chem B; 2011 Jul; 115(29):9087-97. PubMed ID: 21671588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vadose zone attenuation of organic compounds at a crude oil spill site - interactions between biogeochemical reactions and multicomponent gas transport.
    Molins S; Mayer KU; Amos RT; Bekins BA
    J Contam Hydrol; 2010 Mar; 112(1-4):15-29. PubMed ID: 19853961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable electrical and thermal transport in ice-templated multilayer graphene nanocomposites through freezing rate control.
    Schiffres SN; Harish S; Maruyama S; Shiomi J; Malen JA
    ACS Nano; 2013 Dec; 7(12):11183-9. PubMed ID: 24195487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of oil on aqueous foams: electrical conductivity of foamed emulsions.
    Yan YL; Shan C; Wang Y; Deng Q
    Chemphyschem; 2014 Oct; 15(14):3110-5. PubMed ID: 25056102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Graphene Nanoplatelets and Cellular Structure on the Thermal Conductivity of Polysulfone Nanocomposite Foams.
    Abbasi H; Antunes M; Velasco JI
    Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31877642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous drug release at different rates from biodegradable polyurethane foams.
    Sivak WN; Zhang J; Petoud S; Beckman EJ
    Acta Biomater; 2009 Sep; 5(7):2398-408. PubMed ID: 19398389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-frequency tortuosity relaxation in open-cell foams.
    Alvarez-Arenas TE; Gómez IG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):772-8. PubMed ID: 19406705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of vinyl-modified silica and raw silica particles on the properties of as-prepared polymer-silica nanocomposite foams.
    Yeh JM; Chang KC; Peng CW; Chiou SC; Hwang SS; Yang JC; Lin HR
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6297-305. PubMed ID: 19205197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent transport through hard-soft segmented polymer nanocomposites.
    Rath SK; Edatholath SS; Patro TU; Sudarshan K; Sastry PU; Pujari PK; Harikrishnan G
    Phys Chem Chem Phys; 2016 Jan; 18(4):2682-9. PubMed ID: 26726752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry.
    Lattuati-Derieux A; Thao-Heu S; Lavédrine B
    J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams.
    Buahom P; Wang C; Alshrah M; Wang G; Gong P; Tran MP; Park CB
    Nanoscale; 2020 Jun; 12(24):13064-13085. PubMed ID: 32542255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymeric foaming with nanoscale nucleants: a surface nanobubble mechanism.
    Kumar DN; Roy A; Jha A; Sambasivan A; Harikrishnan G
    Chemphyschem; 2014 Dec; 15(18):4006-10. PubMed ID: 25319179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigid Polyurethane Foams Modified with Biochar.
    Uram K; Kurańska M; Andrzejewski J; Prociak A
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites.
    Duong HM; Yamamoto N; Papavassiliou DV; Maruyama S; Wardle BL
    Nanotechnology; 2009 Apr; 20(15):155702. PubMed ID: 19420554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.