BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23463750)

  • 1. Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility.
    Du P; O'Grady G; Gao J; Sathar S; Cheng LK
    Wiley Interdiscip Rev Syst Biol Med; 2013; 5(4):481-93. PubMed ID: 23463750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling of gastrointestinal electrophysiology and experimental validation.
    Du P; O'Grady G; Davidson JB; Cheng LK; Pullan AJ
    Crit Rev Biomed Eng; 2010; 38(3):225-54. PubMed ID: 21133835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model.
    Aghababaie Z; Cheng LK; Paskaranandavadivel N; Avci R; Chan CA; Matthee A; Amirapu S; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2022 Apr; 322(4):G431-G445. PubMed ID: 35137624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling.
    Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysically based modeling of the interstitial cells of cajal: current status and future perspectives.
    Lees-Green R; Du P; O'Grady G; Beyder A; Farrugia G; Pullan AJ
    Front Physiol; 2011; 2():29. PubMed ID: 21772822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside.
    Cheng LK; Du P; O'Grady G
    Physiology (Bethesda); 2013 Sep; 28(5):310-7. PubMed ID: 23997190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications.
    Du P; Paskaranandavadivel N; Angeli TR; Cheng LK; O'Grady G
    Wiley Interdiscip Rev Syst Biol Med; 2016; 8(1):69-85. PubMed ID: 26562482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for the design of a closed-loop gastric pacemaker for treating conduction block.
    Wang L; Malik A; Roop PS; Cheng LK; Paskaranandavadivel N
    Comput Methods Programs Biomed; 2022 Apr; 216():106652. PubMed ID: 35124479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized gastric distension disrupts slow-wave entrainment leading to temporary ectopic propagation: a high-resolution electrical mapping study.
    Chan CA; Aghababaie Z; Paskaranandavadivel N; Avci R; Cheng LK; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2021 Dec; 321(6):G656-G667. PubMed ID: 34612062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biophysically based finite-state machine model for analyzing gastric experimental entrainment and pacing recordings.
    Sathar S; Trew ML; Du P; O'Grady G; Cheng LK
    Ann Biomed Eng; 2014 Apr; 42(4):858-70. PubMed ID: 24276722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias.
    O'Grady G; Du P; Paskaranandavadivel N; Angeli TR; Lammers WJ; Asirvatham SJ; Windsor JA; Farrugia G; Pullan AJ; Cheng LK
    Neurogastroenterol Motil; 2012 Jul; 24(7):e299-312. PubMed ID: 22709238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiscale model of the electrophysiological basis of the human electrogastrogram.
    Du P; O'Grady G; Cheng LK; Pullan AJ
    Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simplified biophysical cell model for gastric slow wave entrainment simulation.
    Du P; Gao J; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6547-50. PubMed ID: 24111242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach.
    Zhang RX; Wang XY; Chen D; Huizinga JD
    Neurogastroenterol Motil; 2011 Sep; 23(9):e356-71. PubMed ID: 21781228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of slow wave propagation and entrainment along the stomach.
    Buist ML; Corrias A; Poh YC
    Ann Biomed Eng; 2010 Sep; 38(9):3022-30. PubMed ID: 20437204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current applications of mathematical models of the interstitial cells of Cajal in the gastrointestinal tract.
    Mah SA; Avci R; Cheng LK; Du P
    WIREs Mech Dis; 2021 Mar; 13(2):e1507. PubMed ID: 33026190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity.
    Cheng LK; Komuro R; Austin TM; Buist ML; Pullan AJ
    World J Gastroenterol; 2007 Mar; 13(9):1378-83. PubMed ID: 17457969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastrointestinal system.
    Cheng LK; O'Grady G; Du P; Egbuji JU; Windsor JA; Pullan AJ
    Wiley Interdiscip Rev Syst Biol Med; 2010; 2(1):65-79. PubMed ID: 20836011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach.
    Wang TH; Du P; Angeli TR; Paskaranandavadivel N; Erickson JC; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2018 Jan; 30(1):. PubMed ID: 28695661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity.
    Carson DA; O'Grady G; Du P; Gharibans AA; Andrews CN
    Neurogastroenterol Motil; 2021 Mar; 33(3):e14048. PubMed ID: 33274564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.