These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 23463750)
1. Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility. Du P; O'Grady G; Gao J; Sathar S; Cheng LK Wiley Interdiscip Rev Syst Biol Med; 2013; 5(4):481-93. PubMed ID: 23463750 [TBL] [Abstract][Full Text] [Related]
2. Multiscale modeling of gastrointestinal electrophysiology and experimental validation. Du P; O'Grady G; Davidson JB; Cheng LK; Pullan AJ Crit Rev Biomed Eng; 2010; 38(3):225-54. PubMed ID: 21133835 [TBL] [Abstract][Full Text] [Related]
3. Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model. Aghababaie Z; Cheng LK; Paskaranandavadivel N; Avci R; Chan CA; Matthee A; Amirapu S; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Angeli-Gordon TR Am J Physiol Gastrointest Liver Physiol; 2022 Apr; 322(4):G431-G445. PubMed ID: 35137624 [TBL] [Abstract][Full Text] [Related]
4. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163 [TBL] [Abstract][Full Text] [Related]
5. Biophysically based modeling of the interstitial cells of cajal: current status and future perspectives. Lees-Green R; Du P; O'Grady G; Beyder A; Farrugia G; Pullan AJ Front Physiol; 2011; 2():29. PubMed ID: 21772822 [TBL] [Abstract][Full Text] [Related]
6. Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Cheng LK; Du P; O'Grady G Physiology (Bethesda); 2013 Sep; 28(5):310-7. PubMed ID: 23997190 [TBL] [Abstract][Full Text] [Related]
7. The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications. Du P; Paskaranandavadivel N; Angeli TR; Cheng LK; O'Grady G Wiley Interdiscip Rev Syst Biol Med; 2016; 8(1):69-85. PubMed ID: 26562482 [TBL] [Abstract][Full Text] [Related]
8. A framework for the design of a closed-loop gastric pacemaker for treating conduction block. Wang L; Malik A; Roop PS; Cheng LK; Paskaranandavadivel N Comput Methods Programs Biomed; 2022 Apr; 216():106652. PubMed ID: 35124479 [TBL] [Abstract][Full Text] [Related]
12. A multiscale model of the electrophysiological basis of the human electrogastrogram. Du P; O'Grady G; Cheng LK; Pullan AJ Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575 [TBL] [Abstract][Full Text] [Related]
13. A simplified biophysical cell model for gastric slow wave entrainment simulation. Du P; Gao J; O'Grady G; Cheng LK Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6547-50. PubMed ID: 24111242 [TBL] [Abstract][Full Text] [Related]
14. Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach. Zhang RX; Wang XY; Chen D; Huizinga JD Neurogastroenterol Motil; 2011 Sep; 23(9):e356-71. PubMed ID: 21781228 [TBL] [Abstract][Full Text] [Related]
15. A model of slow wave propagation and entrainment along the stomach. Buist ML; Corrias A; Poh YC Ann Biomed Eng; 2010 Sep; 38(9):3022-30. PubMed ID: 20437204 [TBL] [Abstract][Full Text] [Related]
16. Current applications of mathematical models of the interstitial cells of Cajal in the gastrointestinal tract. Mah SA; Avci R; Cheng LK; Du P WIREs Mech Dis; 2021 Mar; 13(2):e1507. PubMed ID: 33026190 [TBL] [Abstract][Full Text] [Related]
17. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. Cheng LK; Komuro R; Austin TM; Buist ML; Pullan AJ World J Gastroenterol; 2007 Mar; 13(9):1378-83. PubMed ID: 17457969 [TBL] [Abstract][Full Text] [Related]