These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23463750)

  • 21. Understanding the Biology of Human Interstitial Cells of Cajal in Gastrointestinal Motility.
    Foong D; Zhou J; Zarrouk A; Ho V; O'Connor MD
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32630607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Formal Approach for Scalable Simulation of Gastric ICC Electrophysiology.
    Wang L; Malik A; Roop PS; Cheng LK; Paskaranandavadivel N
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3320-3329. PubMed ID: 30869606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The electrifying stomach.
    Koch KL
    Neurogastroenterol Motil; 2011 Sep; 23(9):815-8. PubMed ID: 21838727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Stochastic Algorithm for Generating Realistic Virtual Interstitial Cell of Cajal Networks.
    Gao J; Sathar S; O'Grady G; Archer R; Cheng LK
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2070-8. PubMed ID: 25781477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A preliminary model of gastrointestinal electromechanical coupling.
    Du P; Poh YC; Lim JL; Gajendiran V; O'Grady G; Buist ML; Pullan AJ; Cheng LK
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3491-5. PubMed ID: 21878406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias.
    Putney J; O'Grady G; Angeli TR; Paskaranandavadivel N; Cheng LK; Erickson JC; Peng Du
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1448-51. PubMed ID: 26736542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On a coupled electro-chemomechanical model of gastric smooth muscle contraction.
    Klemm L; Seydewitz R; Borsdorf M; Siebert T; Böl M
    Acta Biomater; 2020 Jun; 109():163-181. PubMed ID: 32294551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The functional role of intramuscular interstitial cells of Cajal in the stomach.
    Kito Y
    J Smooth Muscle Res; 2011; 47(2):47-53. PubMed ID: 21757854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications.
    Paskaranandavadivel N; Cheng LK; Du P; Rogers JM; O'Grady G
    Am J Physiol Gastrointest Liver Physiol; 2017 Sep; 313(3):G265-G276. PubMed ID: 28546283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in intestinal smooth muscle research: from muscle strips and single cells, via ICC networks to whole organ physiology and assessment of human gut motor dysfunction.
    Huizinga JD
    J Smooth Muscle Res; 2019; 55(0):68-80. PubMed ID: 31956167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational models of autonomic regulation in gastric motility: Progress, challenges, and future directions.
    Athavale ON; Avci R; Cheng LK; Du P
    Front Neurosci; 2023; 17():1146097. PubMed ID: 37008202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical and computational methods for the noninvasive detection of gastric electrical source coupling.
    Irimia A; Bradshaw LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051920. PubMed ID: 15244860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling.
    Berry R; Miyagawa T; Paskaranandavadivel N; Du P; Angeli TR; Trew ML; Windsor JA; Imai Y; O'Grady G; Cheng LK
    Am J Physiol Gastrointest Liver Physiol; 2016 Nov; 311(5):G895-G902. PubMed ID: 27659422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of High-Resolution Electrical Mapping for Characterizing Conduction Blocks Created by Gastric Ablation.
    Aghababaie Z; Chan CA; Paskaranandavadivel N; Beyder A; Farrugia G; Asirvatham S; O'Grady G; Cheng LK; Angeli TR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():170-173. PubMed ID: 31945871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation and propagation of gastric slow waves.
    van Helden DF; Laver DR; Holdsworth J; Imtiaz MS
    Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):516-24. PubMed ID: 19930430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Multiscale Tridomain Model for Simulating Bioelectric Gastric Pacing.
    Sathar S; Trew ML; OGrady G; Cheng LK
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2685-92. PubMed ID: 26080372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A review of the use of numerical analysis in stomach modeling.
    Liu X; Fletcher DF; Bornhorst GM
    J Food Sci; 2024 Jul; 89(7):3894-3916. PubMed ID: 38865250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Theoretical Analysis of Electrogastrography (EGG) Signatures Associated With Gastric Dysrhythmias.
    Calder S; O'Grady G; Cheng LK; Peng Du
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1592-1601. PubMed ID: 28113227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of pacemaker activity in the human stomach.
    Rhee PL; Lee JY; Son HJ; Kim JJ; Rhee JC; Kim S; Koh SD; Hwang SJ; Sanders KM; Ward SM
    J Physiol; 2011 Dec; 589(Pt 24):6105-18. PubMed ID: 22005683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling gastrointestinal bioelectric activity.
    Pullan A; Cheng L; Yassi R; Buist M
    Prog Biophys Mol Biol; 2004; 85(2-3):523-50. PubMed ID: 15142760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.