These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23464031)

  • 1. Comparison of two channel selection criteria for noise suppression in cochlear implants.
    Hazrati O; Loizou PC
    J Acoust Soc Am; 2013 Mar; 133(3):1615-24. PubMed ID: 23464031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous suppression of noise and reverberation in cochlear implants using a ratio masking strategy.
    Hazrati O; Sadjadi SO; Loizou PC; Hansen JH
    J Acoust Soc Am; 2013 Nov; 134(5):3759-65. PubMed ID: 24180786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.
    Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S
    Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The combined effects of reverberation and noise on speech intelligibility by cochlear implant listeners.
    Hazrati O; Loizou PC
    Int J Audiol; 2012 Jun; 51(6):437-43. PubMed ID: 22356300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech perception in simulated electric hearing exploits information-bearing acoustic change.
    Stilp CE; Goupell MJ; Kluender KR
    J Acoust Soc Am; 2013 Feb; 133(2):EL136-41. PubMed ID: 23363194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.
    Mc Laughlin M; Reilly RB; Zeng FG
    J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of reverberant self-masking and overlap-masking effects on speech intelligibility by cochlear implant listeners (L).
    Kokkinakis K; Loizou PC
    J Acoust Soc Am; 2011 Sep; 130(3):1099-102. PubMed ID: 21895052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of adaptive dynamic range optimization in adverse listening conditions for cochlear implants.
    Ali H; Hazrati O; Tobey EA; Hansen JH
    J Acoust Soc Am; 2014 Sep; 136(3):EL242. PubMed ID: 25190428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between binaural benefit and difference in unilateral speech recognition performance for bilateral cochlear implant users.
    Yoon YS; Li Y; Kang HY; Fu QJ
    Int J Audiol; 2011 Aug; 50(8):554-65. PubMed ID: 21696329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blind binary masking for reverberation suppression in cochlear implants.
    Hazrati O; Lee J; Loizou PC
    J Acoust Soc Am; 2013 Mar; 133(3):1607-14. PubMed ID: 23464030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voice gender differences and separation of simultaneous talkers in cochlear implant users with residual hearing.
    Visram AS; Kluk K; McKay CM
    J Acoust Soc Am; 2012 Aug; 132(2):EL135-41. PubMed ID: 22894312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of a coding strategy that removes temporally masked pulses on speech perception by cochlear implant users.
    Lamping W; Goehring T; Marozeau J; Carlyon RP
    Hear Res; 2020 Jun; 391():107969. PubMed ID: 32320925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top-down restoration of speech in cochlear-implant users.
    Bhargava P; Gaudrain E; Başkent D
    Hear Res; 2014 Mar; 309():113-23. PubMed ID: 24368138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing.
    Oxenham AJ; Kreft HA
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25315376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consonant recognition as a function of the number of stimulation channels in the Hybrid short-electrode cochlear implant.
    Reiss LA; Turner CW; Karsten SA; Erenberg SR; Taylor J; Gantz BJ
    J Acoust Soc Am; 2012 Nov; 132(5):3406-17. PubMed ID: 23145621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving speech perception in noise with current focusing in cochlear implant users.
    Srinivasan AG; Padilla M; Shannon RV; Landsberger DM
    Hear Res; 2013 May; 299():29-36. PubMed ID: 23467170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the speech reception threshold of cochlear implant listeners using an envelope-correlation based measure.
    Yousefian N; Loizou PC
    J Acoust Soc Am; 2012 Nov; 132(5):3399-405. PubMed ID: 23145620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing.
    Carroll J; Tiaden S; Zeng FG
    J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.