These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 23464136)

  • 1. Accuracy of a Markov state model generated by searching for basin escape pathways.
    Bhute VJ; Chatterjee A
    J Chem Phys; 2013 Feb; 138(8):084103. PubMed ID: 23464136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building a kinetic Monte Carlo model with a chosen accuracy.
    Bhute VJ; Chatterjee A
    J Chem Phys; 2013 Jun; 138(24):244112. PubMed ID: 23822232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants.
    Chatterjee A; Voter AF
    J Chem Phys; 2010 May; 132(19):194101. PubMed ID: 20499945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty in a Markov state model with missing states and rates: Application to a room temperature kinetic model obtained using high temperature molecular dynamics.
    Chatterjee A; Bhattacharya S
    J Chem Phys; 2015 Sep; 143(11):114109. PubMed ID: 26395689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing long time scale biomolecular dynamics using quasi-stationary distribution kinetic Monte Carlo (QSD-KMC).
    Agarwal A; Hengartner NW; Gnanakaran S; Voter AF
    J Chem Phys; 2019 Aug; 151(7):074109. PubMed ID: 31438708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Markov models of molecular kinetics: generation and validation.
    Prinz JH; Wu H; Sarich M; Keller B; Senne M; Held M; Chodera JD; Schütte C; Noé F
    J Chem Phys; 2011 May; 134(17):174105. PubMed ID: 21548671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new class of enhanced kinetic sampling methods for building Markov state models.
    Bhoutekar A; Ghosh S; Bhattacharya S; Chatterjee A
    J Chem Phys; 2017 Oct; 147(15):152702. PubMed ID: 29055344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An off-lattice, self-learning kinetic Monte Carlo method using local environments.
    Konwar D; Bhute VJ; Chatterjee A
    J Chem Phys; 2011 Nov; 135(17):174103. PubMed ID: 22070288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An energy basin finding algorithm for kinetic Monte Carlo acceleration.
    Puchala B; Falk ML; Garikipati K
    J Chem Phys; 2010 Apr; 132(13):134104. PubMed ID: 20387918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive kinetic Monte Carlo for first-principles accelerated dynamics.
    Xu L; Henkelman G
    J Chem Phys; 2008 Sep; 129(11):114104. PubMed ID: 19044947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty quantification for Markov state models of biomolecules constructed using rare event acceleration techniques.
    Bhattacharya S; Chatterjee A
    J Chem Phys; 2019 Jan; 150(4):044106. PubMed ID: 30709287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating the T-jump-triggered unfolding dynamics of trpzip2 peptide and its time-resolved IR and two-dimensional IR signals using the Markov state model approach.
    Zhuang W; Cui RZ; Silva DA; Huang X
    J Phys Chem B; 2011 May; 115(18):5415-24. PubMed ID: 21388153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A global reaction route mapping-based kinetic Monte Carlo algorithm.
    Mitchell I; Irle S; Page AJ
    J Chem Phys; 2016 Jul; 145(2):024105. PubMed ID: 27421395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition path sampling for discrete master equations with absorbing states.
    Eidelson N; Peters B
    J Chem Phys; 2012 Sep; 137(9):094106. PubMed ID: 22957554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On solving the master equation in spatially periodic systems.
    Kolokathis PD; Theodorou DN
    J Chem Phys; 2012 Jul; 137(3):034112. PubMed ID: 22830688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions?
    Temel B; Meskine H; Reuter K; Scheffler M; Metiu H
    J Chem Phys; 2007 May; 126(20):204711. PubMed ID: 17552793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional self-learning kinetic Monte Carlo model: application to Ag(111).
    Latz A; Brendel L; Wolf DE
    J Phys Condens Matter; 2012 Dec; 24(48):485005. PubMed ID: 23099317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-grained kinetic Monte Carlo models: Complex lattices, multicomponent systems, and homogenization at the stochastic level.
    Collins SD; Chatterjee A; Vlachos DG
    J Chem Phys; 2008 Nov; 129(18):184101. PubMed ID: 19045380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caliber Corrected Markov Modeling (C
    Dixit PD; Dill KA
    J Chem Theory Comput; 2018 Feb; 14(2):1111-1119. PubMed ID: 29323898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics.
    Hinrichs NS; Pande VS
    J Chem Phys; 2007 Jun; 126(24):244101. PubMed ID: 17614531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.