These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23464166)

  • 1. Inverse relationship between carrier mobility and bandgap in graphene.
    Wang J; Zhao R; Yang M; Liu Z; Liu Z
    J Chem Phys; 2013 Feb; 138(8):084701. PubMed ID: 23464166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widely tunable carrier mobility of boron nitride-embedded graphene.
    Wang J; Zhao R; Liu Z; Liu Z
    Small; 2013 Apr; 9(8):1373-8. PubMed ID: 23512736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical performance of 3 m and 3 m +1 armchair graphene nanoribbons under uniaxial strain.
    Kang ES; Ismail R
    Nanoscale Res Lett; 2014; 9(1):598. PubMed ID: 25404871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L; Li Q; Ren H; Su H; Shi QW; Yang J
    J Chem Phys; 2008 Aug; 129(7):074704. PubMed ID: 19044789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study.
    Peng X; Tang F; Copple A
    J Phys Condens Matter; 2012 Feb; 24(7):075501. PubMed ID: 22297686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope.
    Liao Z; Medrano Sandonas L; Zhang T; Gall M; Dianat A; Gutierrez R; Mühle U; Gluch J; Jordan R; Cuniberti G; Zschech E
    Sci Rep; 2017 Mar; 7(1):211. PubMed ID: 28303001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Mass of Quasiparticles in Armchair Graphene Nanoribbons.
    Fischer MM; de Sousa LE; Luiz E Castro L; Ribeiro LA; de Sousa RT; Magela E Silva G; de Oliveira Neto PH
    Sci Rep; 2019 Nov; 9(1):17990. PubMed ID: 31784579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-Narrow Low-Bandgap Graphene Nanoribbons from Bromoperylenes-Synthesis and Terahertz-Spectroscopy.
    Jänsch D; Ivanov I; Zagranyarski Y; Duznovic I; Baumgarten M; Turchinovich D; Li C; Bonn M; Müllen K
    Chemistry; 2017 Apr; 23(20):4870-4875. PubMed ID: 28318065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic carrier mobility of Dirac cones: the limitations of deformation potential theory.
    Li Z; Wang J; Liu Z
    J Chem Phys; 2014 Oct; 141(14):144107. PubMed ID: 25318715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles.
    Qin G; Yan QB; Qin Z; Yue SY; Hu M; Su G
    Phys Chem Chem Phys; 2015 Feb; 17(7):4854-8. PubMed ID: 25594447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional study on the increment of carrier mobility in armchair graphene nanoribbons induced by Stone-Wales defects.
    Wang G
    Phys Chem Chem Phys; 2011 Jul; 13(25):11939-45. PubMed ID: 21617799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity.
    Xu Y; Dai J; Zeng XC
    J Phys Chem Lett; 2016 Jan; 7(2):302-7. PubMed ID: 26722716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarity-reversed robust carrier mobility in monolayer MoS₂ nanoribbons.
    Cai Y; Zhang G; Zhang YW
    J Am Chem Soc; 2014 Apr; 136(17):6269-75. PubMed ID: 24712770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carrier Mobility in Graphyne Should Be Even Larger than That in Graphene: A Theoretical Prediction.
    Chen J; Xi J; Wang D; Shuai Z
    J Phys Chem Lett; 2013 May; 4(9):1443-8. PubMed ID: 26282296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and magnetic properties of armchair graphene nanoribbons with 558 grain boundary.
    Dai QQ; Zhu YF; Jiang Q
    Phys Chem Chem Phys; 2014 Jun; 16(22):10607-13. PubMed ID: 24752487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N = 9 Armchair Graphene Nanoribbons.
    Chen Z; Wang HI; Teyssandier J; Mali KS; Dumslaff T; Ivanov I; Zhang W; Ruffieux P; Fasel R; Räder HJ; Turchinovich D; De Feyter S; Feng X; Kläui M; Narita A; Bonn M; Müllen K
    J Am Chem Soc; 2017 Mar; 139(10):3635-3638. PubMed ID: 28248492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons.
    Chen X; Wang H; Wan H; Song K; Zhou G
    J Phys Condens Matter; 2011 Aug; 23(31):315304. PubMed ID: 21778565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bond length pattern associated with charge carriers in armchair graphene nanoribbons.
    Teixeira JF; de Oliveira Neto PH; da Cunha WF; Ribeiro LA; E Silva GM
    J Mol Model; 2017 Sep; 23(10):293. PubMed ID: 28951991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.