These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23464168)

  • 1. Photodissociation of methyl iodide adsorbed on low-temperature amorphous ice surfaces.
    DeSimone AJ; Olanrewaju BO; Grieves GA; Orlando TM
    J Chem Phys; 2013 Feb; 138(8):084703. PubMed ID: 23464168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet photodissociation of the van der Waals dimer (CH3I)2 revisited. II. Pathways giving rise to neutral molecular iodine.
    Vidma KV; Baklanov AV; Zhang Y; Parker DH
    J Chem Phys; 2006 Oct; 125(13):133303. PubMed ID: 17029456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desorption of hydroxyl radicals in the vacuum ultraviolet photolysis of amorphous solid water at 90 K.
    Hama T; Yabushita A; Yokoyama M; Kawasaki M; Andersson S
    J Chem Phys; 2009 Aug; 131(5):054508. PubMed ID: 19673575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodissociation of polycrystalline and amorphous water ice films at 157 and 193 nm.
    Yabushita A; Kanda D; Kawanaka N; Kawasaki M; Ashfold MN
    J Chem Phys; 2006 Oct; 125(13):133406. PubMed ID: 17029480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron stimulated reactions of methyl iodide coadsorbed with amorphous solid water.
    Perry CC; Faradzhev NS; Madey TE; Fairbrother DH
    J Chem Phys; 2007 May; 126(20):204701. PubMed ID: 17552783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A velocity-map imaging study of methyl non-resonant multiphoton ionization from the photodissociation of CH
    Poullain SM; Chicharro DV; Rubio-Lago L; García-Vela A; Bañares L
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2092):. PubMed ID: 28320907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum ultraviolet photodissociation and surface morphology change of water ice films dosed with hydrogen chloride.
    Yabushita A; Kanda D; Kawanaka N; Kawasaki M
    J Chem Phys; 2007 Oct; 127(15):154721. PubMed ID: 17949205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. O(3PJ) formation and desorption by 157-nm photoirradiation of amorphous solid water.
    DeSimone AJ; Orlando TM
    J Chem Phys; 2014 Mar; 140(9):094702. PubMed ID: 24606371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface abundance change in vacuum ultraviolet photodissociation of CO2 and H2O mixture ices.
    Kinugawa T; Yabushita A; Kawasaki M; Hama T; Watanabe N
    Phys Chem Chem Phys; 2011 Sep; 13(35):15785-91. PubMed ID: 21691645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-dynamics study of photodissociation of water in crystalline and amorphous ices.
    Andersson S; Al-Halabi A; Kroes GJ; van Dishoeck EF
    J Chem Phys; 2006 Feb; 124(6):64715. PubMed ID: 16483237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping and release of CO2 guest molecules by amorphous ice.
    Malyk S; Kumi G; Reisler H; Wittig C
    J Phys Chem A; 2007 Dec; 111(51):13365-70. PubMed ID: 18047299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of surface morphology on D2 desorption kinetics from amorphous solid water.
    Hornekaer L; Baurichter A; Petrunin VV; Luntz AC; Kay BD; Al-Halabi A
    J Chem Phys; 2005 Mar; 122(12):124701. PubMed ID: 15836403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface photochemistry of bromoform on ice: cross section and competing reaction pathways.
    Grecea ML; Backus EH; Kleyn AW; Bonn M
    J Phys Chem B; 2005 Sep; 109(37):17574-8. PubMed ID: 16853248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for the near-UV photodissociation of CH3I on D2O/Cu(110).
    Miller ER; Muirhead GD; Jensen ET
    J Chem Phys; 2013 Feb; 138(8):084702. PubMed ID: 23464167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A desorption mechanism of water following vacuum-ultraviolet irradiation on amorphous solid water at 90 K.
    Hama T; Yokoyama M; Yabushita A; Kawasaki M; Andersson S; Western CM; Ashfold MN; Dixon RN; Watanabe N
    J Chem Phys; 2010 Apr; 132(16):164508. PubMed ID: 20441289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of the A-band ultraviolet photodissociation of methyl iodide and ethyl iodide via velocity-map imaging with 'universal' detection.
    Gardiner SH; Lipciuc ML; Karsili TN; Ashfold MN; Vallance C
    Phys Chem Chem Phys; 2015 Feb; 17(6):4096-106. PubMed ID: 25563514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-UV photodissociation of oriented CH3I adsorbed on Cu(110)-I.
    Jensen ET
    J Chem Phys; 2005 Nov; 123(20):204709. PubMed ID: 16351295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of Hydroxyl Radicals on Water Ice at Low Temperatures.
    Tsuge M; Watanabe N
    Acc Chem Res; 2021 Feb; 54(3):471-480. PubMed ID: 33443993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.
    Gerber RB; Varner ME; Hammerich AD; Riikonen S; Murdachaew G; Shemesh D; Finlayson-Pitts BJ
    Acc Chem Res; 2015 Feb; 48(2):399-406. PubMed ID: 25647299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation mechanisms of oxygen atoms in the O((1)D(2)) state from the 157 nm photoirradiation of amorphous water ice at 90 K.
    Hama T; Yabushita A; Yokoyama M; Kawasaki M; Watanabe N
    J Chem Phys; 2009 Sep; 131(11):114510. PubMed ID: 19778132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.