These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23464177)

  • 1. Coarse-grained simulations of DNA overstretching.
    Romano F; Chakraborty D; Doye JP; Ouldridge TE; Louis AA
    J Chem Phys; 2013 Feb; 138(8):085101. PubMed ID: 23464177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overstretching DNA at 65 pN does not require peeling from free ends or nicks.
    Paik DH; Perkins TT
    J Am Chem Soc; 2011 Mar; 133(10):3219-21. PubMed ID: 21207940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching by single-molecule calorimetry.
    Zhang X; Chen H; Le S; Rouzina I; Doyle PS; Yan J
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3865-70. PubMed ID: 23431154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-induced melting of the DNA double helix. 2. Effect of solution conditions.
    Rouzina I; Bloomfield VA
    Biophys J; 2001 Feb; 80(2):894-900. PubMed ID: 11159456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force induced melting of the constrained DNA.
    Singh AR; Giri D; Kumar S
    J Chem Phys; 2010 Jun; 132(23):235105. PubMed ID: 20572742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA overstretching in the presence of glyoxal: structural evidence of force-induced DNA melting.
    Shokri L; McCauley MJ; Rouzina I; Williams MC
    Biophys J; 2008 Aug; 95(3):1248-55. PubMed ID: 18424499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different pulling modes in DNA overstretching: a theoretical analysis.
    Marenduzzo D; Orlandini E; Seno F; Trovato A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051926. PubMed ID: 20866280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretching chimeric DNA: a test for the putative S-form.
    Whitelam S; Pronk S; Geissler PL
    J Chem Phys; 2008 Nov; 129(20):205101. PubMed ID: 19045879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging.
    van Mameren J; Gross P; Farge G; Hooijman P; Modesti M; Falkenberg M; Wuite GJ; Peterman EJ
    Proc Natl Acad Sci U S A; 2009 Oct; 106(43):18231-6. PubMed ID: 19841258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy.
    King GA; Gross P; Bockelmann U; Modesti M; Wuite GJ; Peterman EJ
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3859-64. PubMed ID: 23431161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pH on the overstretching transition of double-stranded DNA: evidence of force-induced DNA melting.
    Williams MC; Wenner JR; Rouzina I; Bloomfield VA
    Biophys J; 2001 Feb; 80(2):874-81. PubMed ID: 11159454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA nanotweezers studied with a coarse-grained model of DNA.
    Ouldridge TE; Louis AA; Doye JP
    Phys Rev Lett; 2010 Apr; 104(17):178101. PubMed ID: 20482144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition dynamics and selection of the distinct S-DNA and strand unpeeling modes of double helix overstretching.
    Fu H; Chen H; Zhang X; Qu Y; Marko JF; Yan J
    Nucleic Acids Res; 2011 Apr; 39(8):3473-81. PubMed ID: 21177651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of the emergence of distinct overstretched DNA states.
    Zhu YL; Lu ZY; Sun ZY
    J Chem Phys; 2016 Jan; 144(2):024901. PubMed ID: 26772584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overstretching and force-driven strand separation of double-helix DNA.
    Cocco S; Yan J; Léger JF; Chatenay D; Marko JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011910. PubMed ID: 15324091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy and heat capacity of DNA melting from temperature dependence of single molecule stretching.
    Williams MC; Wenner JR; Rouzina I; Bloomfield VA
    Biophys J; 2001 Apr; 80(4):1932-9. PubMed ID: 11259306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt dependence of the elasticity and overstretching transition of single DNA molecules.
    Wenner JR; Williams MC; Rouzina I; Bloomfield VA
    Biophys J; 2002 Jun; 82(6):3160-9. PubMed ID: 12023240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holliday Junction Thermodynamics and Structure: Coarse-Grained Simulations and Experiments.
    Wang W; Nocka LM; Wiemann BZ; Hinckley DM; Mukerji I; Starr FW
    Sci Rep; 2016 Mar; 6():22863. PubMed ID: 26971574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model.
    Ouldridge TE; Louis AA; Doye JP
    J Chem Phys; 2011 Feb; 134(8):085101. PubMed ID: 21361556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling stopped-flow data for nucleic acid duplex formation reactions: the importance of off-path intermediates.
    Sikora JR; Rauzan B; Stegemann R; Deckert A
    J Phys Chem B; 2013 Aug; 117(30):8966-76. PubMed ID: 23902467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.