These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 23464227)

  • 1. Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements.
    Gregoire JM; Xiang C; Liu X; Marcin M; Jin J
    Rev Sci Instrum; 2013 Feb; 84(2):024102. PubMed ID: 23464227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting.
    Xiang C; Suram SK; Haber JA; Guevarra DW; Soedarmadji E; Jin J; Gregoire JM
    ACS Comb Sci; 2014 Feb; 16(2):47-52. PubMed ID: 24372547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe-Cr-Al containing oxide semiconductors as potential solar water-splitting materials.
    Sliozberg K; Stein HS; Khare C; Parkinson BA; Ludwig A; Schuhmann W
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4883-9. PubMed ID: 25650842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells.
    Lin X; Zheng L; Gao G; Chi Y; Chen G
    Anal Chem; 2012 Sep; 84(18):7700-7. PubMed ID: 22946551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A light emitting diode based photoelectrochemical screener for distributed combinatorial materials discovery.
    Winkler GR; Winkler JR
    Rev Sci Instrum; 2011 Nov; 82(11):114101. PubMed ID: 22128993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical scanning droplet cell microscopy (PE-SDCM).
    Kollender JP; Mardare AI; Hassel AW
    Chemphyschem; 2013 Feb; 14(3):560-7. PubMed ID: 23325677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping quantum yield for (Fe-Zn-Sn-Ti)Ox photoabsorbers using a high throughput photoelectrochemical screening system.
    Xiang C; Haber J; Marcin M; Mitrovic S; Jin J; Gregoire JM
    ACS Comb Sci; 2014 Mar; 16(3):120-7. PubMed ID: 24471712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity.
    Guerrette JP; Percival SJ; Zhang B
    J Am Chem Soc; 2013 Jan; 135(2):855-61. PubMed ID: 23244164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and theory of electrocatalysts based on scanning electrochemical microscopy screening methods.
    Fernandez JL; White JM; Sun Y; Tang W; Henkelman G; Bard AJ
    Langmuir; 2006 Dec; 22(25):10426-31. PubMed ID: 17129011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells.
    Zhang H; Oellers T; Feng W; Abdulazim T; Saw EN; Ludwig A; Levkin PA; Plumeré N
    Anal Chem; 2017 Jun; 89(11):5832-5839. PubMed ID: 28486800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction.
    Schäfer D; Mardare C; Savan A; Sanchez MD; Mei B; Xia W; Muhler M; Ludwig A; Schuhmann W
    Anal Chem; 2011 Mar; 83(6):1916-23. PubMed ID: 21329337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel electrochemical treatment system and application for identifying acid-stable oxygen evolution electrocatalysts.
    Jones RJ; Shinde A; Guevarra D; Xiang C; Haber JA; Jin J; Gregoire JM
    ACS Comb Sci; 2015 Feb; 17(2):71-5. PubMed ID: 25561243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.
    Jiang R
    Rev Sci Instrum; 2007 Jul; 78(7):072209. PubMed ID: 17672740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production.
    Jaramillo TF; Baeck SH; Kleiman-Shwarsctein A; Choi KS; Stucky GD; McFarland EW
    J Comb Chem; 2005; 7(2):264-71. PubMed ID: 15762755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution.
    Greeley J; Jaramillo TF; Bonde J; Chorkendorff IB; Nørskov JK
    Nat Mater; 2006 Nov; 5(11):909-13. PubMed ID: 17041585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropipet delivery-substrate collection mode of scanning electrochemical microscopy for the imaging of electrochemical reactions and the screening of methanol oxidation electrocatalysts.
    Lin CL; Rodríguez-López J; Bard AJ
    Anal Chem; 2009 Nov; 81(21):8868-77. PubMed ID: 19817452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined electrochemical surface plasmon resonance for angle spread imaging of multielement electrode arrays.
    Choi CH; Hillier AC
    Anal Chem; 2010 Jul; 82(14):6293-8. PubMed ID: 20575531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system.
    Torisawa YS; Ohara N; Nagamine K; Kasai S; Yasukawa T; Shiku H; Matsue T
    Anal Chem; 2006 Nov; 78(22):7625-31. PubMed ID: 17105152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.
    Liang Y; Li Y; Wang H; Dai H
    J Am Chem Soc; 2013 Feb; 135(6):2013-36. PubMed ID: 23339685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.