These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23464230)

  • 1. Tracking geomagnetic fluctuations to picotesla accuracy using two superconducting quantum interference device vector magnetometers.
    Henry S; Pozzo di Borgo E; Cavaillou A
    Rev Sci Instrum; 2013 Feb; 84(2):024501. PubMed ID: 23464230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human MCG measurements with a high-sensitivity potassium atomic magnetometer.
    Kamada K; Ito Y; Kobayashi T
    Physiol Meas; 2012 Jun; 33(6):1063-71. PubMed ID: 22621881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-axis SQUID-based absolute vector magnetometer.
    Schönau T; Zakosarenko V; Schmelz M; Stolz R; Anders S; Linzen S; Meyer M; Meyer HG
    Rev Sci Instrum; 2015 Oct; 86(10):105002. PubMed ID: 26520976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of High-Temperature Superconductivity on SQUID Magnetometers.
    Clarke J; Koch RH
    Science; 1988 Oct; 242(4876):217-23. PubMed ID: 17787650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HTS magnetometers for fetal magnetocardiography.
    Li Z; Wakai RT; Paulson DN; Schwartz B
    Neurol Clin Neurophysiol; 2004 Nov; 2004():25. PubMed ID: 16012655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of multiple sources using a SQUID vector magnetometer.
    Burghoff M; Schnabel A; Drung D; Thiel F; Knappe-Grüneberg S; Hartwig S; Kosch O; Trahms L; Koch H
    Neurol Clin Neurophysiol; 2004 Nov; 2004():67. PubMed ID: 16012672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K.
    Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS
    Rev Sci Instrum; 2011 Jan; 82(1):015109. PubMed ID: 21280860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sensor configuration for a 304 SQUID vector magnetometer.
    Schnabel A; Burghoff M; Hartwig S; Petsche F; Steinhoff U; Drung D; Koch H
    Neurol Clin Neurophysiol; 2004 Nov; 2004():70. PubMed ID: 16012698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Self-Field Effects in Magnetometers Based on Meander-Shaped Arrays of Josephson Junctions or SQUIDs Connected in Series.
    Crété D; Kermorvant J; Lemaître Y; Marcilhac B; Mesoraca S; Trastoy J; Ulysse C
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The diamond superconducting quantum interference device.
    Mandal S; Bautze T; Williams OA; Naud C; Bustarret É; Omnès F; Rodière P; Meunier T; Bäuerle C; Saminadayar L
    ACS Nano; 2011 Sep; 5(9):7144-8. PubMed ID: 21800905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.
    Takeda K; Mori H; Yamaguchi A; Ishimoto H; Nakamura T; Kuriki S; Hozumi T; Ohkoshi S
    Rev Sci Instrum; 2008 Mar; 79(3):033909. PubMed ID: 18377027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superconducting Quantum Interferometers for Nondestructive Evaluation.
    Faley MI; Kostyurina EA; Kalashnikov KV; Maslennikov YV; Koshelets VP; Dunin-Borkowski RE
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29210980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High temperature RF SQUIDs for biomedical applications.
    Zhang Y; Tavrin Y; Mück M; Braginski AI; Heiden C; Elbert T; Hampson S
    Physiol Meas; 1993 May; 14(2):113-9. PubMed ID: 8334406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.
    Schwarz T; Nagel J; Wölbing R; Kemmler M; Kleiner R; Koelle D
    ACS Nano; 2013 Jan; 7(1):844-50. PubMed ID: 23252846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital-to-analog converter using a superconducting quantum interference device.
    Nakanishi M
    Rev Sci Instrum; 2012 Nov; 83(11):114701. PubMed ID: 23206079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of ac and dc magnetometers with a Dy2O3 standard.
    Chen DX; Skumryev V; Bozzo B
    Rev Sci Instrum; 2011 Apr; 82(4):045112. PubMed ID: 21529044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography.
    Horigome H; Ogata K; Kandori A; Miyashita T; Takahashi-Igari M; Chen YJ; Hamada H; Tsukada K
    Pediatr Res; 2006 Jan; 59(1):121-5. PubMed ID: 16326989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superconducting quantum interference device setup for magnetoelectric measurements.
    Borisov P; Hochstrat A; Shvartsman VV; Kleemann W
    Rev Sci Instrum; 2007 Oct; 78(10):106105. PubMed ID: 17979461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube superconducting quantum interference device.
    Cleuziou JP; Wernsdorfer W; Bouchiat V; Ondarçuhu T; Monthioux M
    Nat Nanotechnol; 2006 Oct; 1(1):53-9. PubMed ID: 18654142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.