BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 23464302)

  • 1. Gantry and isocenter displacements of a linear accelerator caused by an add-on micromultileaf collimator.
    Riis HL; Zimmermann SJ; Hjelm-Hansen M
    Med Phys; 2013 Mar; 40(3):031707. PubMed ID: 23464302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive geometric quality assurance framework for preclinical microirradiators.
    Anvari A; Poirier Y; Sawant A
    Med Phys; 2019 Apr; 46(4):1840-1851. PubMed ID: 30656713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of an Elekta Versa HD linear accelerator for stereotactic radiosurgery with circular cone collimators.
    Zhang M; Fan Q; Lei Y; Thapa B; Padula G
    J Xray Sci Technol; 2020; 28(1):71-82. PubMed ID: 31904001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel phantom and procedure providing submillimeter accuracy in daily QA tests of accelerators used for stereotactic radiosurgery*.
    Brezovich IA; Popple RA; Duan J; Shen S; Wu X; Benhabib S; Huang M; Cardan RA
    J Appl Clin Med Phys; 2016 Jul; 17(4):246-253. PubMed ID: 27455506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quality control methods for linear accelerator radiation and mechanical axes alignment.
    Létourneau D; Keller H; Becker N; Amin MN; Norrlinger B; Jaffray DA
    Med Phys; 2018 Jun; 45(6):2388-2398. PubMed ID: 29645282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The measurement of linear accelerator isocenter motion using a three-micrometer device and an adjustable pointer.
    Tsai JS; Curran BH; Sternick ES; Engler MJ
    Int J Radiat Oncol Biol Phys; 1996 Jan; 34(1):189-95. PubMed ID: 12118550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient quality assurance method with automated data acquisition of a single phantom setup to determine radiation and imaging isocenter congruence.
    Kang H; Patel R; Roeske JC
    J Appl Clin Med Phys; 2019 Oct; 20(10):127-133. PubMed ID: 31535781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An EPID-based method to determine mechanical deformations in a linear accelerator.
    Gourdeau D; Gingras L; Beaulieu F; Leclerc G; Archambault L
    Med Phys; 2018 Nov; 45(11):5054-5065. PubMed ID: 30242848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel verification method using a plastic scintillator imagining system for assessment of gantry sag in radiotherapy.
    Tsuneda M; Nishio T; Saito A; Tanaka S; Suzuki T; Kawahara D; Matsushita K; Nishio A; Ozawa S; Karasawa K; Nagata Y
    Med Phys; 2018 Jun; 45(6):2411-2424. PubMed ID: 29663431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter.
    Du W; Yang J; Luo D; Martel M
    Med Phys; 2010 May; 37(5):2256-63. PubMed ID: 20527559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate technique for complete geometric calibration of cone-beam computed tomography systems.
    Cho Y; Moseley DJ; Siewerdsen JH; Jaffray DA
    Med Phys; 2005 Apr; 32(4):968-83. PubMed ID: 15895580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of the focal spot motion relative to the collimator axis of a linear accelerator under gantry rotation.
    Riis HL; Ebert MA; Rowshanfarzad P
    Phys Med Biol; 2019 Jan; 64(3):03NT02. PubMed ID: 30566917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the selection of gantry and collimator angles for isocenter localization using Winston-Lutz tests.
    Du W; Johnson JL; Jiang W; Kudchadker RJ
    J Appl Clin Med Phys; 2016 Jan; 17(1):167-178. PubMed ID: 26894350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator.
    Du W; Gao S
    Med Phys; 2011 Aug; 38(8):4575-8. PubMed ID: 21928629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical note: Comprehensive evaluations of gantry and couch rotation isocentricities for implementing proton stereotactic radiosurgery.
    Shen J; Robertson DG; Bues M; Shipulin K; Liu W; Stoker J; Ashman JB; Lara P; Keole SR; Wong W; Vora SA
    Med Phys; 2023 Jun; 50(6):3359-3367. PubMed ID: 36959772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EXACTRAC x-ray and beam isocenters-what's the difference?
    Tideman Arp D; Carl J
    Med Phys; 2012 Mar; 39(3):1418-23. PubMed ID: 22380374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of a dedicated linear accelerator-based stereotactic radiosurgery-radiotherapy unit.
    Das IJ; Downes MB; Corn BW; Curran WJ; Werner-Wasik M; Andrews DW
    Radiother Oncol; 1996 Jan; 38(1):61-8. PubMed ID: 8850427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SU-E-T-133: Isocenter Measurements with the Winston-Lutz Test: Impact on Treatment Planning.
    Templeton A; Chu J; Turian J
    Med Phys; 2012 Jun; 39(6Part11):3733-3734. PubMed ID: 28517166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Verification of the linac isocenter for stereotactic radiosurgery using cine-EPID imaging and arc delivery.
    Rowshanfarzad P; Sabet M; O'Connor DJ; Greer PB
    Med Phys; 2011 Jul; 38(7):3963-70. PubMed ID: 21858993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of isocentric shifts on delivery accuracy during the irradiation of small cerebral targets-Quantification and possible corrections.
    Wack LJ; Exner F; Wegener S; Sauer OA
    J Appl Clin Med Phys; 2020 May; 21(5):56-64. PubMed ID: 32196950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.