These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 23464322)
1. Validation of columnar CsI x-ray detector responses obtained with hybridMANTIS, a CPU-GPU Monte Carlo code for coupled x-ray, electron, and optical transport. Sharma D; Badano A Med Phys; 2013 Mar; 40(3):031907. PubMed ID: 23464322 [TBL] [Abstract][Full Text] [Related]
2. hybridMANTIS: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators. Sharma D; Badal A; Badano A Phys Med Biol; 2012 Apr; 57(8):2357-72. PubMed ID: 22469917 [TBL] [Abstract][Full Text] [Related]
3. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging. Nillius P; Klamra W; Sibczynski P; Sharma D; Danielsson M; Badano A Med Phys; 2015 Feb; 42(2):600-605. PubMed ID: 28102604 [TBL] [Abstract][Full Text] [Related]
4. Experimental validation of Monte Carlo (MANTIS) simulated x-ray response of columnar CsI scintillator screens. Freed M; Miller S; Tang K; Badano A Med Phys; 2009 Nov; 36(11):4944-56. PubMed ID: 19994503 [TBL] [Abstract][Full Text] [Related]
5. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance. Dong H; Sharma D; Badano A Med Phys; 2014 Dec; 41(12):121907. PubMed ID: 25471967 [TBL] [Abstract][Full Text] [Related]
6. A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems. Freed M; Park S; Badano A Med Phys; 2010 Jun; 37(6):2593-605. PubMed ID: 20632571 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic imaging performance in breast tomosynthesis. Badano A; Kyprianou IS; Jennings RJ; Sempau J Med Phys; 2007 Nov; 34(11):4076-91. PubMed ID: 18074617 [TBL] [Abstract][Full Text] [Related]
8. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging. Nillius P; Klamra W; Sibczynski P; Sharma D; Danielsson M; Badano A Med Phys; 2015 Feb; 42(2):600-5. PubMed ID: 25771557 [TBL] [Abstract][Full Text] [Related]
9. Fast on-site Monte Carlo tool for dose calculations in CT applications. Chen W; Kolditz D; Beister M; Bohle R; Kalender WA Med Phys; 2012 Jun; 39(6):2985-96. PubMed ID: 22755683 [TBL] [Abstract][Full Text] [Related]
10. Optimization of the scintillation detector in a combined 3D megavoltage CT scanner and portal imager. Mosleh-Shirazi MA; Swindell W; Evans PM Med Phys; 1998 Oct; 25(10):1880-90. PubMed ID: 9800695 [TBL] [Abstract][Full Text] [Related]
11. Deriving depth-dependent light escape efficiency and optical Swank factor from measured pulse height spectra of scintillators. Howansky A; Peng B; Lubinsky AR; Zhao W Med Phys; 2017 Mar; 44(3):847-860. PubMed ID: 28039881 [TBL] [Abstract][Full Text] [Related]
12. X-ray imaging performance of structured cesium iodide scintillators. Zhao W; Ristic G; Rowlands JA Med Phys; 2004 Sep; 31(9):2594-605. PubMed ID: 15487742 [TBL] [Abstract][Full Text] [Related]
13. MANTIS: combined x-ray, electron and optical Monte Carlo simulations of indirect radiation imaging systems. Badano A; Sempau J Phys Med Biol; 2006 Mar; 51(6):1545-61. PubMed ID: 16510962 [TBL] [Abstract][Full Text] [Related]
14. Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise. Hajdok G; Battista JJ; Cunningham IA Med Phys; 2008 Jul; 35(7):3194-204. PubMed ID: 18697544 [TBL] [Abstract][Full Text] [Related]
15. Effect of oblique X-ray incidence in flat-panel computed tomography of the breast. Badano A; Kyprianou IS; Freed M; Jennings RJ; Sempau J IEEE Trans Med Imaging; 2009 May; 28(5):696-702. PubMed ID: 19272986 [TBL] [Abstract][Full Text] [Related]
16. Signal and noise transfer properties of CMOS based active pixel flat panel imager coupled to structured CsI:Tl. Arvanitis CD; Bohndiek SE; Blakesley J; Olivo A; Speller RD Med Phys; 2009 Jan; 36(1):116-26. PubMed ID: 19235380 [TBL] [Abstract][Full Text] [Related]
17. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit. Badal A; Badano A Med Phys; 2009 Nov; 36(11):4878-80. PubMed ID: 19994495 [TBL] [Abstract][Full Text] [Related]
18. The imaging performance of compact Lu2O3:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography. Liaparinos PF; Kandarakis IS Med Phys; 2009 Jun; 36(6):1985-97. PubMed ID: 19610287 [TBL] [Abstract][Full Text] [Related]
19. Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit. Leung TS; Powell S J Biomed Opt; 2010; 15(5):055007. PubMed ID: 21054089 [TBL] [Abstract][Full Text] [Related]
20. Segmented crystalline scintillators: empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(TI) detector. Sawant A; Antonuk LE; El-Mohri Y; Zhao Q; Wang Y; Li Y; Du H; Perna L Med Phys; 2006 Apr; 33(4):1053-66. PubMed ID: 16696482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]