These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 23464637)

  • 1. Simultaneously strong and tough ultrafine continuous nanofibers.
    Papkov D; Zou Y; Andalib MN; Goponenko A; Cheng SZ; Dzenis YA
    ACS Nano; 2013 Apr; 7(4):3324-31. PubMed ID: 23464637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Fiber Density and Strain Rate on the Mechanical Properties of Electrospun Polycaprolactone Nanofiber Mats.
    Conte AA; Sun K; Hu X; Beachley VZ
    Front Chem; 2020; 8():610. PubMed ID: 32793555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of rheological behaviors of polyacrylonitrile grafted sericin solution on film structure and mechanical properties.
    Zhang Y; Cheng L; Zhang R; Ma W; Qin Z
    Int J Biol Macromol; 2024 May; 266(Pt 2):131102. PubMed ID: 38580021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Structural Relaxation of Aramid Nanofibers for Superstretchable Polymer Fibers with High Toughness and Heat Resistance.
    Ji H; Feng S; Yang M
    ACS Nano; 2024 Jul; ():. PubMed ID: 38968387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymeric Fibers with High Strength and High Toughness at Extreme Temperatures.
    Cheng C; Liao X; Silva JMSE; Conceição ALC; Carlos D; Agarwal S; Hou H; Greiner A; Feng W
    Adv Mater; 2024 Jun; ():e2407712. PubMed ID: 38940342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral Honeycomb Microstructured Bacterial Cellulose for Increased Strength and Toughness.
    Yu K; Balasubramanian S; Pahlavani H; Mirzaali MJ; Zadpoor AA; Aubin-Tam ME
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50748-50755. PubMed ID: 33112612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Thermosetting Resins with Synergistic Enhanced Strength and Toughness through Combination with Rigid and Soft Microdomains.
    Guo Y; Shu T; Wang Y; Cui C; Zhou Q; Zhang Q; Cheng Y; Ge Z; Chen G; Zhang Y
    Macromol Rapid Commun; 2024 Jun; 45(11):e2400036. PubMed ID: 38453138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers.
    Gao HL; Zhao R; Cui C; Zhu YB; Chen SM; Pan Z; Meng YF; Wen SM; Liu C; Wu HA; Yu SH
    Natl Sci Rev; 2020 Jan; 7(1):73-83. PubMed ID: 34692019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneously Strengthening and Toughening All-Natural Structural Materials via 3D Nanofiber Network Interfacial Design.
    Yu SH; Yang HB; Zhao X; Wang Q; Ruan YH; Liu ZX; Yue X; Zhu Y; Wu H; Guan QF
    Angew Chem Int Ed Engl; 2024 Jun; ():e202408458. PubMed ID: 38872327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directly Converting Bulk Wood into Branch Micro-Nano Fibers to Synergistically Enhance the Strength and Toughness via Interface Engineering.
    Zhang T; Wang S; Yang K; Lin L; Yang P; Zhou K; Chen W; Chen M; Zhou X
    Nano Lett; 2024 Jun; 24(22):6576-6584. PubMed ID: 38775216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous scaling law of strength and toughness of cellulose nanopaper.
    Zhu H; Zhu S; Jia Z; Parvinian S; Li Y; Vaaland O; Hu L; Li T
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):8971-6. PubMed ID: 26150482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise Fabrication and Manipulation of Individual Polymer Nanofibers.
    Kim D; Cha BJ; Guo H; Gao G; Pennington C; Wong MS; Getachew BA; Han Y
    Nano Lett; 2024 May; 24(20):6038-6042. PubMed ID: 38735063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a porous polyacrylonitrile nanofiber adsorbent for removing radioactive
    Chemosphere; 2024 Apr; 353():141626. PubMed ID: 38528419
    [No Abstract]   [Full Text] [Related]  

  • 14. A Study of the Relationship between Polymer Solution Entanglement and Electrospun PCL Fiber Mechanics.
    Rajeev M; Helms CC
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun Poly(carbonate-urea-urethane)s Nonwovens with Shape-Memory Properties as a Potential Biomaterial.
    Rolińska K; Bakhshi H; Balk M; Blocki A; Panwar A; Puchalski M; Wojasiński M; Mazurek-Budzyńska M
    ACS Biomater Sci Eng; 2023 Dec; 9(12):6683-6697. PubMed ID: 38032398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of contact angle and mechanical properties of resin monomers filled with graphene oxide nanofibers.
    Velo MMAC; Nascimento TRL; Obeid AT; Brondino NCM; Mondelli RFL
    Braz Dent J; 2023; 34(4):127-134. PubMed ID: 37909635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman Analysis of Orientation and Crystallinity in High
    Laramée AW; Pellerin C
    Appl Spectrosc; 2023 Nov; 77(11):1289-1299. PubMed ID: 37774683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Isothermal Crystallization Kinetics of Poly (ɛ-Caprolactone) (PCL) and MgO Incorporated PCL Nanofibers.
    Gicheha D; Cisse AN; Bhuiyan A; Shamim N
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Considering Electrospun Nanofibers as a Filler Network in Electrospun Nanofiber-Reinforced Composites to Predict the Tensile Strength and Young's Modulus of Nanocomposites: A Modeling Study.
    Gavande V; Nagappan S; Lee WK
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Wet Electrospinning Inside a Reactive Pre-Ceramic Gel to Yield Advanced Nanofiber-Reinforced Geopolymer Composites.
    Xu Y; Guo P; Akono AT
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.