These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23464672)

  • 21. Application of Grote-Hynes theory to the reaction catalyzed by thymidylate synthase.
    Kanaan N; Roca M; Tuñón I; Martí S; Moliner V
    J Phys Chem B; 2010 Oct; 114(42):13593-600. PubMed ID: 20925368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial versus human thymidylate synthase: Kinetics and functionality.
    Islam Z; Gurevic I; Strutzenberg TS; Ghosh AK; Iqbal T; Kohen A
    PLoS One; 2018; 13(5):e0196506. PubMed ID: 29715278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial Thymidylate Synthase Binds Two Molecules of Substrate and Cofactor without Cooperativity.
    Sapienza PJ; Falk BT; Lee AL
    J Am Chem Soc; 2015 Nov; 137(45):14260-3. PubMed ID: 26517288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tyrosine 146 of thymidylate synthase assists proton abstraction from the 5-position of 2'-deoxyuridine 5'-monophosphate.
    Liu Y; Barrett JE; Schultz PG; Santi DV
    Biochemistry; 1999 Jan; 38(2):848-52. PubMed ID: 9888826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid quantum/classical molecular dynamics simulations of the proton transfer reactions catalyzed by ketosteroid isomerase: analysis of hydrogen bonding, conformational motions, and electrostatics.
    Chakravorty DK; Soudackov AV; Hammes-Schiffer S
    Biochemistry; 2009 Nov; 48(44):10608-19. PubMed ID: 19799395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active site general catalysts are not necessary for some proton transfer reactions of thymidylate synthase.
    Huang W; Santi DV
    Biochemistry; 1997 Feb; 36(7):1869-73. PubMed ID: 9048572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Backbone and ILV methyl resonance assignments of E. coli thymidylate synthase bound to cofactor and a nucleotide analogue.
    Sapienza PJ; Lee AL
    Biomol NMR Assign; 2014 Apr; 8(1):195-9. PubMed ID: 23653343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deprotonations in the Reaction of Flavin-Dependent Thymidylate Synthase.
    Stull FW; Bernard SM; Sapra A; Smith JL; Zuiderweg ER; Palfey BA
    Biochemistry; 2016 Jun; 55(23):3261-9. PubMed ID: 27214228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase.
    Cummins PL; Gready JE
    J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-level QM/MM calculations support the concerted mechanism for Michael addition and covalent complex formation in thymidylate synthase.
    Kaiyawet N; Lonsdale R; Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Chem Theory Comput; 2015 Feb; 11(2):713-22. PubMed ID: 26579604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of halogen substitutions on dUMP to stability of thymidylate synthase/dUMP/mTHF ternary complex using molecular dynamics simulation.
    Kaiyawet N; Rungrotmongkol T; Hannongbua S
    J Chem Inf Model; 2013 Jun; 53(6):1315-23. PubMed ID: 23705822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Benchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transfer.
    Świderek K; Arafet K; Kohen A; Moliner V
    J Chem Theory Comput; 2017 Mar; 13(3):1375-1388. PubMed ID: 28192669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preserved hydride transfer mechanism in evolutionarily divergent thymidylate synthases.
    Abeysinghe T; Hong B; Wang Z; Kohen A
    Curr Top Biochem Res; 2016; 17():19-30. PubMed ID: 28018055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The importance of ensemble averaging in enzyme kinetics.
    Masgrau L; Truhlar DG
    Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aminolysis of a model nerve agent: a computational reaction mechanism study of O,S-dimethyl methylphosphonothiolate.
    Mandal D; Sen K; Das AK
    J Phys Chem A; 2012 Aug; 116(32):8382-96. PubMed ID: 22830557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational analysis of the proton translocation from Asp96 to schiff base in bacteriorhodopsin.
    Sato Y; Hata M; Neya S; Hoshino T
    J Phys Chem B; 2006 Nov; 110(45):22804-12. PubMed ID: 17092031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relative free energies of binding to thymidylate synthase of 2- and/or 4-thio and/or 5-fluoro analogues of dUMP.
    Jarmuła A; Cieplak P; Leś A; Rode W
    J Comput Aided Mol Des; 2003 Oct; 17(10):699-710. PubMed ID: 15068368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. QM/MM Free Energy Calculations of Long-Range Biological Protonation Dynamics by Adaptive and Focused Sampling.
    Pöverlein MC; Hulm A; Dietschreit JCB; Kussmann J; Ochsenfeld C; Kaila VRI
    J Chem Theory Comput; 2024 Jul; 20(13):5751-5762. PubMed ID: 38718352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.