BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 2346481)

  • 1. Carrier-independent entry of 1-methyl-4-phenylpyridinium (MPP+) into adrenal chromaffin cells as a consequence of charge delocalization.
    Reinhard JF; Daniels AJ; Painter GR
    Biochem Biophys Res Commun; 1990 May; 168(3):1143-8. PubMed ID: 2346481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of toxicity and cellular resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium in adrenomedullary chromaffin cell cultures.
    Reinhard JF; Carmichael SW; Daniels AJ
    J Neurochem; 1990 Jul; 55(1):311-20. PubMed ID: 1972391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular compartmentalization of 1-methyl-4-phenylpyridinium with catecholamines in adrenal medullary chromaffin vesicles may explain the lack of toxicity to adrenal chromaffin cells.
    Reinhard JF; Diliberto EJ; Viveros OH; Daniels AJ
    Proc Natl Acad Sci U S A; 1987 Nov; 84(22):8160-4. PubMed ID: 2891137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of cellular transport, subcellular distribution, and secretion of the neurotoxicant 1-methyl-4-phenylpyridinium in bovine adrenomedullary cell cultures.
    Reinhard JF; Diliberto EJ; Daniels AJ
    J Neurochem; 1989 Apr; 52(4):1253-9. PubMed ID: 2926400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of 1-methyl-4-phenylpyridinium (MPP+) into bovine chromaffin granules results in a large restriction of its molecular motion: a 13C and 31P NMR study.
    Daniels AJ; Reinhard JF; Painter GR
    Biochem Biophys Res Commun; 1988 Nov; 156(3):1243-9. PubMed ID: 3263856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of 1-methyl-4-phenylpyridinium (MPP+) with bovine adrenal medulla chromaffin vesicle ghosts.
    Farmer MK; Tipton KF
    Biochem Soc Trans; 1996 Feb; 24(1):60S. PubMed ID: 8674735
    [No Abstract]   [Full Text] [Related]  

  • 7. Subcellular compartmentation of 2'methyl MPP+ can explain differences in toxicity to adrenal chromaffin cells.
    Reinhard JF; Daniels AJ
    Ann N Y Acad Sci; 1992 May; 648():323-5. PubMed ID: 1353333
    [No Abstract]   [Full Text] [Related]  

  • 8. Energy-driven uptake of the neurotoxin 1-methyl-4-phenylpyridinium into chromaffin granules via the catecholamine transporter.
    Daniels AJ; Reinhard JF
    J Biol Chem; 1988 Apr; 263(11):5034-6. PubMed ID: 3258595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of the neurotoxin, 4-methylphenylpyridinium, into chromaffin granules and synaptic vesicles: a proton gradient drives its uptake through monoamine transporter.
    Moriyama Y; Amakatsu K; Futai M
    Arch Biochem Biophys; 1993 Sep; 305(2):271-7. PubMed ID: 8373164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of the transport of the quaternary ammonium 1-methyl-4-phenylpyridinium by chromaffin granules.
    Darchen F; Scherman D; Desnos C; Henry JP
    Biochem Pharmacol; 1988 Nov; 37(22):4381-7. PubMed ID: 3264161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The release of 3H-1-methyl-4-phenylpyridinium from bovine adrenal chromaffin cells is modulated by somatostatin.
    Ribeiro L; Martel F; Azevedo I
    Regul Pept; 2006 Dec; 137(3):107-13. PubMed ID: 16846655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1-Methyl-4-phenylpyridinium is a substrate of the vesicular monoamine uptake system of chromaffin granules.
    Scherman D; Darchen F; Desnos C; Henry JP
    Eur J Pharmacol; 1988 Feb; 146(2-3):359-60. PubMed ID: 3259507
    [No Abstract]   [Full Text] [Related]  

  • 13. Short-term exposure to somatostatin or muscarinic agonists reduce acetylcholine-induced 3H-MPP+ release from bovine adrenal medullary cells.
    Ribeiro L; Martel F; Azevedo I
    J Biomed Sci; 2007 May; 14(3):347-55. PubMed ID: 17225960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholamine depletion and accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP(+)) in adrenal medullary chromaffin cells.
    Wilson SP; Beeler JF
    Neurochem Int; 1988; 13(3):333-43. PubMed ID: 19651089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of the 1-methyl-4-phenyl-2,3-dihydropyridinium and 1-methyl-4-phenylpyridinium species in primary cultures of mouse astrocytes.
    Wu EY; Langston JW; Di Monte DA
    J Pharmacol Exp Ther; 1992 Jul; 262(1):225-30. PubMed ID: 1625201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A method for preparation of carbon fiber electrode].
    Cai D; Qu AL; Wang XM; Zhou Z; Xu JH; Han JS
    Sheng Li Xue Bao; 1999 Dec; 51(6):692-9. PubMed ID: 11498941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of an electrode selective for 1-methyl-4-phenylpyridinium (MPP+) to measure its uptake and accumulation by mitochondria.
    Davey GP; Tipton KF; Murphy MP
    J Neural Transm Suppl; 1993; 40():47-55. PubMed ID: 8294900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of chronic neurotoxicity: long-term retention of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) within catecholaminergic neurons.
    Johannessen JN
    Neurotoxicology; 1991; 12(2):285-302. PubMed ID: 1956587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and disposition of 1-methyl-4-phenylpyridinium in primary cultures of mouse astrocytes.
    Di Monte DA; Wu EY; Irwin I; Delanney LE; Langston JW
    Glia; 1992; 5(1):48-55. PubMed ID: 1311704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histamine-induced increases in cyclic AMP levels in bovine adrenal medullary cells.
    Marley PD; Thomson KA; Jachno K; Johnston MJ
    Br J Pharmacol; 1991 Dec; 104(4):839-46. PubMed ID: 1725765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.